

Многопрофильная инженерная олимпиада «Звезда» «Авиационная и ракетно-космическая техника»

7 класс

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1 (20 баллов)

Ракета выходит из состояния покоя с постоянным ускорением 9.8м/c^2 . Сколько времени ей требуется, чтобы развить скорость, равную скорости света (300~000~km/c).

Решение:

Скорость тела при равноускоренном движении и начальной скорости 0.

$$v=at$$
 $t=rac{v}{a}$ $v=c=3\cdot10^8$ м/с $t=rac{3\cdot10^8}{9,8}=3,06\cdot10^7$ секунд. или $t=8\,500$ часов.

Задача 2 (20 баллов)

Ракета, двигаясь вертикально и достигнув высоты 300 км, развивает скорость 1000 км/ч. Каково ее ускорение?

Решение:

Скорость ракеты в системе Си:

$$v = \frac{1000 \cdot 1000}{3600} = 277.8 \text{ m/c}.$$

Движение равноускоренное

$$v = v_0 \pm at$$

$$h = v_0 \cdot t \pm \frac{at^2}{2}$$

для данного случая с учетом $v_0 = 0$

$$v = at$$
$$h = \frac{at^2}{2}$$

Время движения $t = \frac{v}{a}$, тогда

$$h = \frac{a}{2} \cdot \frac{v^2}{a^2} = \frac{v^2}{2a}$$
 или $a = \frac{v^2}{2h}$; $a = \frac{(277.8)^2}{2\cdot300} = 128.6$ м/с.

Задача 3 (20 баллов)

Определить скорость точки поверхности на экваторе (в км/ч.) при вращении Земли вокруг своей оси. Средний радиус Земли 6371 км.

Решение:

$$v = \frac{s}{t}$$
, $s = 2\pi R$, $t - 24$ часа. $v = \frac{2\pi R}{t} = \frac{6,28 \cdot 6371}{24} = 1667,1$ км/ч.

Задача 4 (20 баллов)

Реактивный пассажирский самолет летит по горизонтали с ускорением 3m/c^2 . За какое минимальное время самолет долетит от Челябинска до Омска? (1000 км). Какую скорость самолет наберет в конце полета?

Решение:

При равноускоренном движении самолет пролетит

$$S = v_0 t + \frac{at^2}{2}$$
, T.K. $v_0 = 0$

$$S=rac{at^2}{2}$$
 , откуда $t=\sqrt{rac{2S}{a}}$.
$$t=\sqrt{rac{2\cdot 1000\cdot 1000}{3}}=\sqrt{204\ 081}$$

или t = 816.5 с.

Скорость самолета в конце полета

$$v = at$$
,
 $v = 3 \cdot 816.5 = 2449.5 \text{ m/c}$.

Задача 5 (20 баллов)

Бомбардировщик летит на высоте 10 км со скоростью 1000 км/ч. За сколько километров до цели летчик должен сбросить бомбу, чтобы точно поразить цель?

Решение:

Время полета бомбы до цели:

$$h = \frac{gt^2}{2}$$
, $t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \cdot 10\ 000}{9.8}} = 45 \text{ c.}$

За это время самолет пролетает по горизонтали расстояние

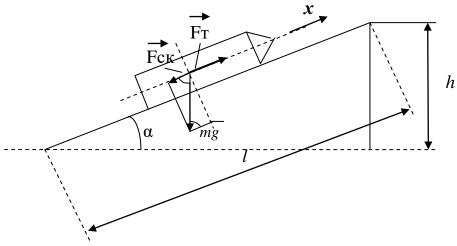
$$s = v \cdot t$$
, $s = v \cdot \sqrt{\frac{2h}{g}}$
 $s = 278 \cdot 45 = 12500 \text{ m} = 12.5 \text{ km}$.

Многопрофильная инженерная олимпиада «Звезда» «Авиационная и ракетно-космическая техника»

8-9 классы

Заключительный этап

2020-2021


Задания, ответы и критерии оценивания

Задача 1 (20 баллов)

Ракета движется по направляющей длиной l=12 м, расположенной под углом $\alpha=45^\circ$ к горизонту. Масса ракеты $250~\kappa z$. Время движения ракеты по направляющей t=0,1 с. Скорость ракеты в конце движения v=150 м/с. Определить силу тяги двигателя и дальность полета ракеты. Считать, что топливо сгорает мгновенно, трение не учитывать.

Решение:

А) определение силы тяги:

Сила действующая на ракету

$$R = F_T - F_{CK} = ma$$

Скатывающая сила

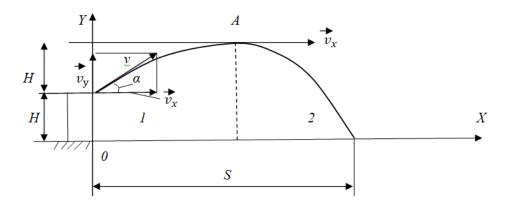
$$Fck = ma + mg \cdot cos \alpha$$

Сила тяги

$$F_T = ma + mg \cdot cos \alpha$$

Ускорение ракеты

$$l = \frac{at^2}{2}, a = \frac{2l}{t^2}$$


Сила тяги

$$F_T = m \left(\frac{2l}{t^2} + g \cdot \cos \alpha \right)$$

$$F_T = 250 \left(\frac{2 \cdot 12}{0.1^2} + 9.8 \cdot 0.71 \right) = 601 750 \text{ H}.$$

Б) Определение дальности полета:

Сход ракеты с направляющей можно представить как движение тела, брошенного под углом к горизонту с высоты h.

Время движения ракеты $t = t_1 + t_2$,

 t_1 – время движения ракеты на 1 участке.

 t_2 – время движения ракеты на 2 участке.

Дальность движения ракеты

$$S = v_x(t_1 + t_2)$$

$$v_x = v \cdot Cos \alpha$$

$$v_{v} = v \cdot Sin \alpha$$

При движение по у

$$H = v_{y} t_{1} - \frac{g t_{1}^{2}}{2}$$

$$v = v_{y} - g t_{1} = 0$$

$$t_1 = \frac{v_y}{q}, t_1 = \frac{v \cdot \sin \alpha}{q}.$$

Из точки А движения ракеты по оси У описывается

$$h = \frac{g t_1^2}{2}$$
, $t_2 = \sqrt{\frac{2h}{g}}$, T.K. $\frac{h}{l} = \operatorname{Sin} \alpha$

$$h=l$$
·Sin $lpha$, тогда $t_2=\sqrt{rac{2\cdot l\cdot Sin\ lpha}{g}}$

Дальность полета ракеты

$$S = v \cdot Cos \alpha \left(\frac{v \cdot Sin \alpha}{g} + \sqrt{\frac{2l \cdot Sin \alpha}{g}} \right)$$

$$S = 150 \cdot 0.71 \left(\frac{150 \cdot 0.71}{9.8} + \sqrt{\frac{2 \cdot 12 \cdot 0.71}{9.8}} \right) = 1301.3$$

Задача 2 (20 баллов)

При посадке самолета выпущен тормозной парашют. Определить силу сопротивления, создаваемую парашютом, если масса самолета 5 тн, посадочная скорость 220 км/ч, пробег самолета 1200 м.

Решение:

Кинетическая энергия самолета гасится за счет совершения работы.

$$v = 220 \text{ km/q} = 61 \text{ m/c}.$$

$$\frac{mv^2}{2} = F_c \cdot S, \quad F_c = \frac{mv^2}{2S};$$

$$F_c = \frac{5000 \cdot 61,1^2}{2 \cdot 1200} = 7780,3 \text{ H}.$$

Задача 3 (20 баллов)

Граната, летящая со скоростью 15 м/с, разорвалась на два осколка массами 6 и 14 кг. Скорость большего осколка возросла до 24 м/с по направлению движения. Найти скорость и направление движения меньшего осколка.

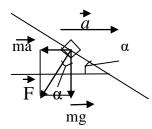
Решение:

Закон сохранения импульса

$$(m_1 + m_2) v = m_1 u_1 + m_2 u_2$$

 $m_1 + m_2$ — масса всей гранаты

$$u_1 = \frac{(m_1 + m_2)v - m_2 u_2}{m_1}$$


$$u_1 = \frac{(6+14)15-14\cdot 24}{6} = -6 \text{ m/c}.$$

Минус означает, что меньший осколок полетит в направлении, противоположном направлению движения гранаты.

Задача 4 (20 баллов)

Какой угол α с горизонтом составляет поверхность бензина в баке автомобиля, двигающегося с ускорением 2 м/с.

Решение:

Выбираем частицу жидкости. Обозначаем силы действующие на нее: сила тяжести mg и сила инерции ma. Находим угол α .

tg
$$\alpha = \frac{ma}{mg} = \frac{a}{g}$$
, $\alpha = \arctan \frac{a}{g}$, $\alpha = 11^{\circ}$.

Задача 5 (20 баллов)

Найти зависимость ускорения свободного падения от высоты над поверхностью Земли.

На какой высоте ускорение свободного падения составляет 50% от ускорения свободного падения на поверхности Земли.

Средняя плотность Земли $\rho = 5.5 \text{ г/см}^3$, радиус R = 6371 км.

Решение:

На тело m находящееся на высоте h над поверхностью Земли действует сила тяжести

$$mg = G \frac{mM}{(R+h)^2}$$

$$g = 6.67 \cdot 10^{-11} \frac{5.97 \cdot 10^{24}}{(6.37 \cdot 10^6 + h)^2}.$$

Многопрофильная инженерная олимпиада «Звезда» «Авиационная и ракетно-космическая техника»

10-11 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1 (20 баллов)

К третьей ступени ракеты массой 500 κ г пристыкована головная часть массой 75 κ г. Между ними помещена сжатая пружина.

При испытаниях на земле пружина сообщила головной части скорость 5,1 м/с по отношению к ракете-носителю. Каковы будут скорости головной части и ракеты-носителя, если их разделение произойдет на орбите при движении со скоростью 8 км/с.

Решение:

В соответствии с законом сохранения импульса

$$M_A v_A' + M_B v_B' = (M_A + M_B) v_0$$

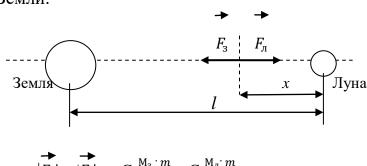
Из наземных испытаний

$$v_A' - v_B' = 5.1 \text{ m/c}$$

или

$$v_{A}^{'}=v_{B}^{'}-5,1 \text{ m/c}$$

Тогла


$$M_A (v_B' - 5,1) + M_B v_B' = (M_A + M_B) v_0$$

 $v_B' = v_0 + \frac{M_A}{M_A + M_B} \cdot 5,1 = 8005 \text{ m/c}$
 $v_A' = 8005 - 5,1 = 7999,9 \text{ m/c}$

Задача 2 (20 баллов)

Определить местоположение точки Лагранжа между Луной и Землей (точка, в которой гравитация Луны уравновешивается гравитацией Земли). Масса Луны составляет 1% от массы Земли. Расстояние между Землей и Луной 380 000 км.

Решение:

В т. Лагранжа сила тяготения со стороны Земли уравновешивается силой тяготения со стороны Луны. При этом считается, что масса Луны составляет 1% от массы Земли.

$$|F_{\pi}| = |F_3|$$
, $G \frac{M_3 \cdot m}{(l-x)^2} = G \frac{M_{\pi} \cdot m}{x^2}$

Упростим уравнение

$$\frac{M_3}{(l-x)^2} = \frac{0.01 \cdot M_3}{-x)^2}$$

$$\frac{1}{(l-x)^2} = \frac{0,1}{x},$$
 $x = 0.09 \cdot 380\ 000 = 34\ 200\ \text{km}$

Задача 3 (20 баллов)

Средняя высота спутника над поверхностью Земли 1700 км. Определить его скорость и период вращения.

Решение:

Сила, действующая на спутник

$$F = G \frac{mM}{(R+h)^2}$$

R – радиус Земли.

С учетом ІІ закона Ньютона

$$F = ma_{ii}$$
,

где $a_{\rm ц}$ – центростремительное ускорение.

$$a_{II} = \frac{v^2}{R+h}$$

$$G\frac{mM}{(R+h)^2} = \frac{v^2}{R+h},$$

где $g = \frac{GM}{R^2}$ — ускорение свободного падения у поверхности Земли.

Тогда

$$v = R\sqrt{\frac{g}{R+h}}$$

$$v = 6.37 \cdot 10^6 \sqrt{\frac{9.8}{6.37 \cdot 10^6 + 1.7 \cdot 10^6}} = 7.01 \cdot 10^3 \text{ m/c}$$

Период вращения спутника

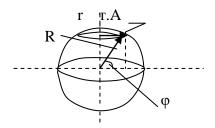
$$T = \frac{2\pi (R+h)}{v}$$

$$T = \frac{2 \cdot 3,14 \cdot (6,37 \cdot 10^6 + 1,7 \cdot 10^6)}{7,1 \cdot 10^3} = 7,01 \cdot 10^3 \text{ c.}$$

Задача 4 (20 баллов)

Космический корабль массой 10^6 кг начинает подниматься вертикально вверх. Сила тяги его двигателей $2,94\cdot10^7$ н. Определить ускорение корабля и вес тела, находящегося в нем, если на Земле на тело действует сила тяжести $5,88\cdot10^2$ н.

Решение:


 $F_{\rm T}$ — сила тяги двигателей; F — сила тяготения.

$$F=G\,rac{Mm_1}{r^2}\,,\,\,$$
или $F_{\mathrm{T}}-F=m_1a,\,\,\,$ тогда $a=rac{F}{m_1}-rac{GM}{R^2}=rac{F_{\mathrm{T}}}{m_1}-\mathrm{g}$ $a=(2.94\cdot 10^7\cdot 10^{-6}-9.8)=19.6\,\,\mathrm{m/c^2}$

Задача 5 (20 баллов)

Определить скорость движения точки земной поверхности на широте г. Челябинска ($\phi = 55^{\circ}$ с. ш.) при суточном вращении Земли.

Решение:

r – радиус, по которому движется т.А

$$\frac{r}{R} = \cos \varphi$$
, $r = R \cdot \cos 55^{\circ}$.

R – радиус Земли.

Скорость движения т.А

$$v=\frac{S}{t}=\frac{2\pi r}{t},$$

t – время оборота Земли вокруг своей оси.

t = 24 часа.

$$v = \frac{6,28 \cdot 6371 \cdot \cos 55^{\circ}}{24} = 950 \text{ km/y}.$$

Многопрофильная инженерная олимпиада «Звезда» «Машиностроение»

7-9 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Выпускник университета решил организовать собственное малое инновационное предприятие. Взяв кредит в банке, он купил киберфизическую производственную систему для изготовления домашнего гоночного авто- и авиасимулятора с кабиной пилота на динамической платформе, представленной на рисунке. Такая платформа, содержит неподвижную раму (1), приводы (2) и подвижную раму (3), шарнирно соединенную с неподвижной рамой посредством шести динамически управляемых опор в виде цилиндров (4). На подвижной раме закреплена кабина автосимулятора (5). В цехе предприятия было установлено следующее оборудование: токарный и фрезерный обрабатывающие центры с компьютерным управлением и робот-манипулятор. В процессе изготовления различных деталей молодой инженер столкнулся с рядом производственных задач, представленных ниже.

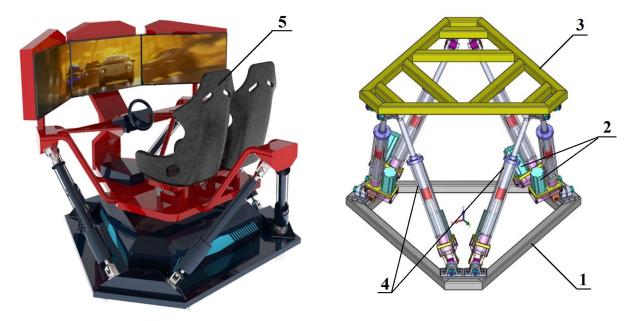


Рис. 1

Задача № 1 (5 баллов)

На токарном обрабатывающем центре возникла задача обработки цилиндрической детали от управляемой опоры симулятора. На заготовке (1) диаметром 100 мм (рис. 2) с ранее проточенной канавкой (3) необходимо еще проточить цилиндр диаметром 50 мм и длиной 55 мм. Известно, что за один проход вдоль оси заготовки резец (2) срезает в радиальном направлении этого цилиндра слой металла толщиной 1 мм. Определить, сколько времени займет обработка этой детали на токарном обрабатывающем центре, если известно, что резец движется влево и вправо вдоль оси заготовки прямолинейно и равномерно, а его скорость составляет V=1 м/с.

Решение. Время, затраченное на обработку детали равно суммарному пути пройденному резцом деленному на скорость резца t=S/V. Скорость известна, подсчитаем суммарный путь. При толщине одного прохода 1 мм резец должен сделать 25 двойных ходов (туда и обратно). Длина одного прохода 55 мм. Таким образом, путь равен S=25*2*55=2750 мм. Искомое время равно t=S/V=2750/1=2750 секунд.

Ответ: 2750 секунд.

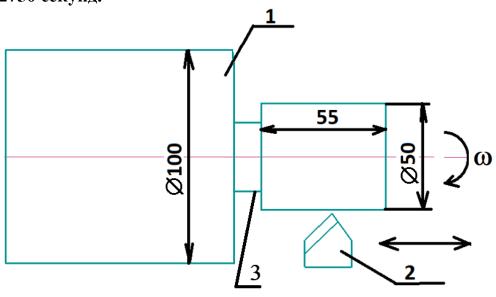
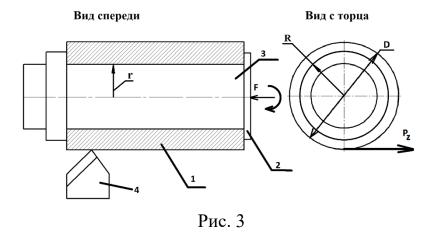



Рис. 2

Задача № 2 (10 баллов)

Для обработки на токарном станке тонкостенной цилиндрической детали от управляемой опоры используется жесткая цилиндрическая оправка (3). Заготовка (1) опоры насаживается на эту оправку с зазором и вращается вместе с ней в патроне токарного станка. Заготовка прижимается к торцу оправки с помощью прижимной гайки (2) (рис. 3). На заготовку диаметром D=52 мм во время обработки от резца (4) действует тангенциальная сила P_z .

Известно, что оператор станка закрутил гайку динамометрическим ключом с усилием прижима F=3000 Н. Требуется определить максимальную величину тангенциальной силы Pz, которую обеспечивает данное усилие затяжки без проскальзывания заготовки на втулке (без учета коэффициента запаса) при следующих исходных данных: наружный радиус левого опорного торца оправки и гайки R=25 мм, внутренний радиус заготовки r=15 мм, коэффициент трения между заготовкой и торцем оправки $f_1=0,5$, коэффициент трения между торцем заготовки и гайкой $f_2=0,3$. Трением на цилиндрических поверхностях пренебречь.

<u>Решение.</u> Для определения силы Pz достаточно воспользоваться уравнением моментов — момент силы P_z должен быть уравновешен моментами сил трения заготовки о торец оправки и гайку: $M_1 = M_2$. Поскольку в условии задачи ничего не сказано про характер контакта и распределения сил от гайки и торца оправки на заготовку, то с учетом, что контакт происходит по узкой полосе R-r=25-15=10 мм, то обоснованно будет предположение, что итоговую силу трения можно приложить на окружности радиусом r+(R-r)/2=(r+R)/2=20 мм. Тогда: $Pz*D/2=F*f_1*(R+r)/2))+F*f_2*(R+r)/2)$, отсюда находим Pz.

$$Pz = \frac{F(f_10,5(R+r) + f_20,5(R+r))}{0,5D} = \frac{3000(0,5 \cdot 0,02 + 0,3 \cdot 0,02)}{0,026}$$
$$= 1846,2 \text{ H}.$$

Ответ: 1846,2 Ньютонов.

Задача № 3 (25 баллов)

Для обработки цилиндрической детали опоры симулятора на фрезерном обрабатывающем центре ее заготовка (1) крепится в специальном зажимном устройстве с пневматическим приводом (3). Зажим заготовки осуществляется путем ее прижима с помощью рычага (2) к призматической опоре (4). Рычаг приводится в движение с помощью пневматического цилиндра круглого сечения, имеющего шток (5) и поршень (6). Сжатый воздух подается только в бесштоковую полость (7). Длины плеч рычага A=150 мм и B=300 мм показаны на рис. 4. Требуется определить, какая сила **F** будет приложена к заготовке, если известен диаметр поршня пневмоцилиндра **D**=50 мм, а давление воздуха в пневмоцилиндре составляет **р**=6 МПа.

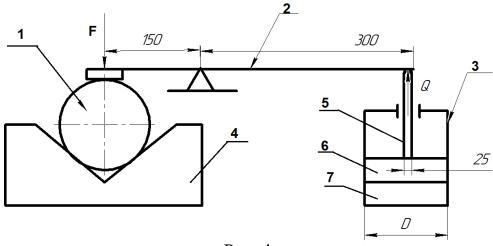


Рис. 4

Решение. Поршень площадью S создает усилие на штоке Q равное $Q=p*S=p*(\pi*(D*D)/4)=6000000*(3,14*(0,05*0,05)/4)=11775$ H. Шток действует на заготовку через рычаг. Запишем для рычага правило моментов: F*A=O*B.

Из этого соотношения находим F=(Q*B)/A=(11775*0,3)/0,15=23550 H.

Ответ: 23550 Ньютонов.

Задача № 4 (30 баллов)

Симулятор монтируется на неподвижной раме, профиль которой изображен на рис. 5. На виде спереди рама имеет вид равностороннего треугольника с усеченными углами. Рама сваривается из труб переменного сечения и на виде слева имеет форму равнобокой трапеции. Сварочный робот должен сварить 6 труб в шести местах, как показано на рис. 5. Рама сваривается в три этапа. На первом этапе свариваются швы на лицевой поверхности (вид спереди), на втором — на оборотной, на третьем — снаружи и изнутри рамы (вид слева). Определить, какова должна быть скорость перемещения сварочного электрода V, если собственно процесс самой сварки всей рамы должен быть выполнен за 100 секунд (время перемещения электрода между швами и другие холостые перемещения не учитывается). Известно, что во время сварки электрод робота движется прямолинейно и равномерно.

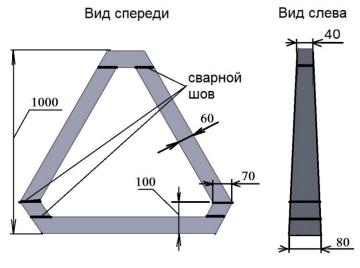


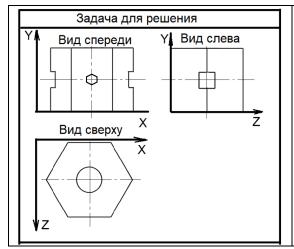
Рис. 5

Решение. Скорость сварки равняется суммарной длине сварных швов деленной на время. Всего имеется шесть мест сварки, которые представляют собой плоские прямоугольники разных размеров. Рассмотрим вид слева. Трапеция является частью равнобедренного треугольника с высотой h и основанием 80 мм. Чтобы найти коэффициент подобия, найдем высоту исходного треугольника трапеции h/80=(h-1000)/40. Получим h=2000 мм. Коэффициент подобия равен 2000/80=25.

1. Рассмотрим первый шов снизу на расстоянии 60 мм от нижней части рамы. Составим пропорцию.

2000-60/x1=2000/80=25; x1=77,6 мм. Общая длина нижних швов составит P1=2*(2*70+2*77,6)=590,4 мм.

- 2. Рассмотрим шов на расстоянии 100 мм. Составим пропорцию 2000-100/x2=25; x2=76 мм. Общая длина средних швов составит P2=2*(2*70+2*76)=584 мм.
- 3. Рассмотрим верхний шов на расстоянии 940 мм от нижней части рамы. Составим пропорцию. 2000-940/x3=25; x3=42,4. Общая длина верхних швов составит P3=2*(2*70+2*42,4)=449,6 мм.


Общая длина швов составит S=P1+P2+P3=590,4+584+449,6=1624 мм.

Скорость сварки равна V=S/t=1624/100=16,24 мм/с.

Ответ: 16,24 мм/с.

Задача № 5 (30 баллов)

Для участка сборки выпускник получил чертеж одной из деталей симулятора, которая без размеров изображена тремя проекциями, приведенными на рисунке слева внизу («Задача для решения»). Три проекции — это изображение трех видов конструкции: спереди (взгляд по оси Z), слева (по оси X) и сверху (по оси Y). Нарисуйте разрез этой конструкции плоскостью, параллельной виду спереди (плоскость, параллельная XoY) и проходящей ровно посредине толщины конструкции. Для пояснения приведенных выше понятий на рисунке справа («Пример для пояснения») даны все виды и разрезы применительно к другой детали. На разрезе рисуются все кромки детали, которые попали в секущую плоскость и которые видны за ней.

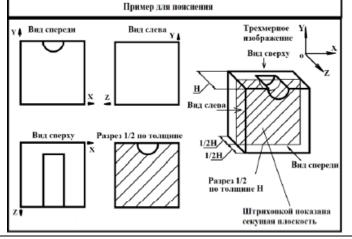
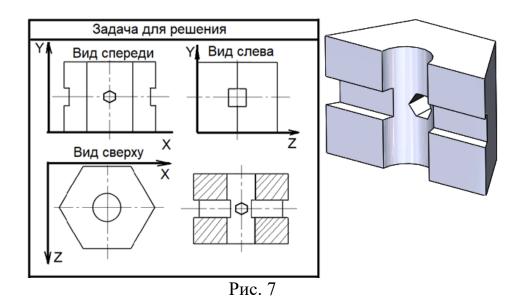



Рис. 6

Решение. На виде спереди представлена шестигранная призма с шестигранным отверстием. Квадратное отверстие сквозное. Круглое и шестигранное отверстия могут быть и не сквозными, это по видам определить нельзя. Поэтому, если учащийся нарисует несквозные круглое и шестигранное отверстия, оценку можно не снижать. На виде сверху представлена окружность, обозначающая цилиндрическое отверстие. На виде слева видно квадратное отверстие. В разрезе необходимо нарисовать линии пересечения цилиндра, шестигранной призмы и квадратного отверстия. (рис. 7).

Многопрофильная инженерная олимпиада «Звезда» «Машиностроение»

10-11 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

собственное Выпускник университета решил организовать малое инновационное банке, предприятие. Взяв кредит ОН купил киберфизическую производственную систему для изготовления домашнего гоночного авто- и авиасимулятора с кабиной пилота на динамической платформе, представленной на рисунке 1. Такая платформа, содержит неподвижную раму (1), приводы (2) и подвижную раму (3), шарнирно соединенную с неподвижной рамой посредством шести динамически управляемых опор в виде цилиндров (4). На подвижной раме закреплена кабина симулятора (5). В цехе предприятия было установлено следующее фрезерный обрабатывающие оборудование: токарный И компьютерным управлением и робот-манипулятор. В процессе изготовления различных деталей молодой инженер столкнулся с рядом производственных задач, представленных ниже.

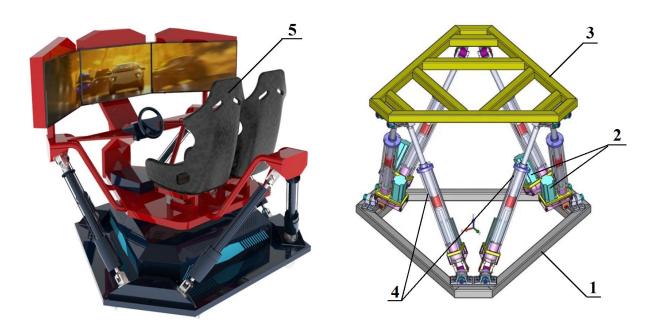


Рис. 1

Задача № 1 (5 баллов)

На токарном обрабатывающем центре возникла задача надежного закрепления в его патроне обрабатываемой цилиндрической детали от управляемой опоры симулятора (рис. 2). Патрон – это вращаемое станком цилиндрической приспособление формы (1) ДЛЯ закрепления обрабатываемой заготовки (3) тремя кулачками (2). Чтобы кулачки не сдеформировали больше заданной величины трубчатую заготовку к ней от каждого такого кулачка должно быть приложено радиальное усилие F=2 кH. Однако при высокой частоте вращения патрона на кулачки действует центробежная сила. Определить, какое должно быть радиальное воздействие от механического привода патрона на кулачок Fn, если известно, что масса такого кулачка равна М=1 кг, центр его массы при зажиме данной заготовки расположен на расстоянии R=0,1 м от оси вращения патрона, который при этом вращается с частотой n=1000 об/мин.

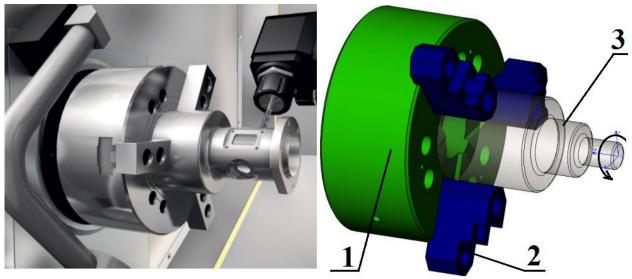


Рис. 2

Решение. Кулачки совершают круговое вращение с постоянной угловой скоростью. Данное движение является ускоренным, поэтому на кулачки действует центробежная сила, равная по модулю и противоположная по направлению центростремительной силе: $F=mR\omega^2$, где R-радиус, м; m-масса кулачков, кг; ω -угловая скорость, рад/с. Центробежная сила равна $F=1*0,1*(2*\pi*10^3/60)^2=1096,2$ ≈ 1100 H. Чтобы на кулачке оставалось усилие 2 кH, от привода патрона на данный кулачок должно быть радиальное усилие F=2000+1100=3100 H.

Ответ: 3100 Н.

Задача № 2 (10 баллов)

Для обработки на токарном станке тонкостенной цилиндрической детали от управляемой опоры используется жесткая цилиндрическая оправка (3). Заготовка (1) опоры насаживается на эту оправку с зазором и вращается вместе с ней в патроне токарного станка. Заготовка прижимается к торцу оправки с помощью прижимной гайки (2) (рис. 3). На заготовку диаметром $D=52\,$ мм во время обработки от резца (4) действует тангенциальная сила $Pz=1000\,$ H. Необходимо определить минимально достаточную силу прижима F гайки (без учета коэффициента запаса) при следующих исходных данных: наружный радиус левого опорного торца оправки и гайки $R=25\,$ мм, внутренний радиус заготовки $r=15\,$ мм, коэффициент трения между заготовкой и торцем оправки $f_1=0,5$, коэффициент трения между торцем заготовки и гайкой $f_2=0,3$. Трением на цилиндрических поверхностях пренебречь.

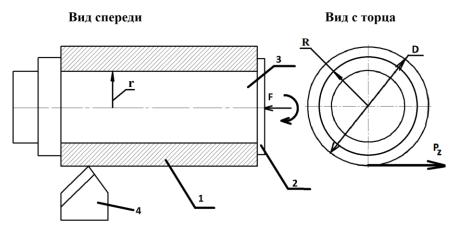
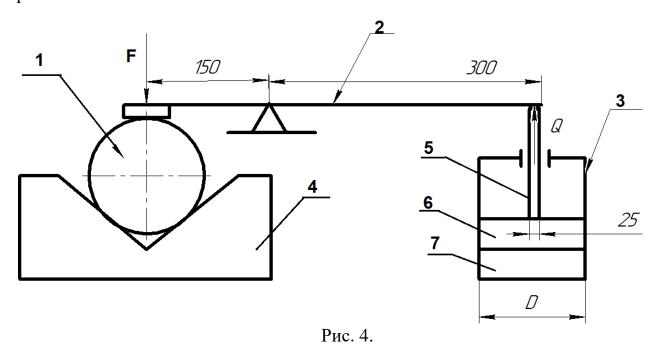


Рис. 3

Решение: для определения силы прижима F достаточно воспользоваться уравнением моментов — момент силы P_z должен быть уравновешен моментами сил трения заготовки о торец оправки и гайку: M_1 = M_2 . Поскольку в условии задачи ничего не сказано про характер контакта и распределения сил от гайки и торца оправки на заготовку, то с учетом, что контакт происходит по узкой полосе R-r=25-15=10 мм, то обоснованно будет предположение, что итоговую силу трения можно приложить на окружности радиусом r+(R-r)/2=(r+R)/2=20 мм.

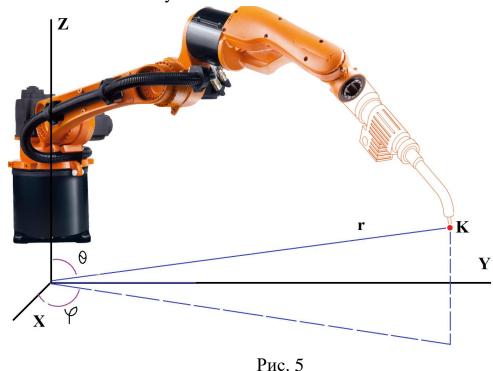

Тогда: $Pz*D/2=F*f_1*(R+r)/2))+F*f_2*(R+r)/2)$, отсюда находим F

$$F = \frac{0.5PzD}{(f_1 + f_2)\left[\frac{R+r}{2}\right]} = \frac{0.5 \cdot 1000 \cdot 0.052}{(0.5 + 0.3)\left[\frac{0.025 + 0.015}{2}\right]} = 1625 H.$$

Ответ:1625 Н.

Задача № 3 (25 баллов)

Для обработки цилиндрической детали опоры симулятора на фрезерном обрабатывающем центре ее заготовка (1) крепится в специальном зажимном устройстве с пневматическим приводом (3). Известно, что для надежного удержания заготовки при обработке требуется усилие зажима F=25 кH. Зажим заготовки осуществляется путем ее прижима с помощью рычага (2) к призматической опоре (4). Рычаг приводится в движение с помощью пневматического цилиндра круглого сечения, имеющего шток (5) и поршень (6). Сжатый воздух подается только в бесштоковую полость (7). Длины плеч рычага A=150 мм и B=300 мм показаны на рис. 4. Требуется определить диаметр поршня пневмоцилиндра D, необходимый для развития усилия на штоке Q, если известно, что давление воздуха в пневмоцилиндре составляет р=6 МПа.


Решение: 1) сначала необходимо определить усилие на штоке, воспользуемся для этого правилом рычага: F*A=Q*B или 25000*0,15=Q*0,3. Отсюда находим Q: $Q=(W*L_1)/L_2=(25000*0,15)/0,3=12500$ H. Далее определим диаметр цилиндра. Для этого воспользуемся определением давления (сила на штоке Q деленная на площадь поршня в цилиндре): $p=Q/S=Q/((\pi*D^2)/4)$. Выразим искомый диаметр цилиндра:

$$D = \sqrt{\frac{4Q}{p\pi}} = \sqrt{\frac{4 \cdot 12500}{6 \cdot 10000000 \cdot 3,14}} = 0,052$$
 м.

Ответ: 0,052 м.

Задача № 4 (30 баллов)

Для сваривания неподвижной и подвижной рам симулятора применяется робот-манипулятор. Данный робот работает в сферической системе координат, это значит, что координаты конца К сварочного электрода задаются тройкой чисел (r, φ, θ) (рис. 5), углы измеряются в градусах, расстояние в метрах. В начальный момент электрод находился в точке 1 с координатами $(1, 45^{\circ}, 45^{\circ})$. В следующий момент времени рабочий орган робота переместился прямой в точку 2 с координатами $(1,30^{\circ},60)$. Определить расстояние, на которое переместился конец К электрода при его движении из точки 1 в точку 2.

Решение: Перейдем в декартову систему координат и определим декартовы

координаты точки 1:

 $x1=r*sin(\theta)*cos(\phi)=1*sin(45^\circ)*cos(45^\circ)=1*0,7*0,7=0,49$ м;

 $y1=r*\sin(\theta)*\sin(\phi)=1*0,7*0,7=0,49 \text{ M};$

 $z1=r*cos(\theta)=1*0,7=0,7 \text{ M}.$

Аналогично находим координаты точки 2:

 $x2=r*\sin(\theta)*\cos(\phi)=1*\sin(60^\circ)*\cos(30^\circ)=1*0.87*0.87=0.76 \text{ m};$

 $y2=r*\sin(\theta)*\sin(\phi)=1*\sin(60^\circ)*\sin(30^\circ)=1*0,87*0,5=0,43\text{m};$

 $z2=r*cos(\theta)=1*cos(60^\circ)=1*0,5=0,5 \text{ m}.$

Найдем расстояние между двумя точками в декартовой системе координат по формуле:

$$s = \sqrt{(x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2}.$$

$$s = \sqrt{(0.76 - 0.49)^2 + (0.43 - 0.49)^2 + (0.5 - 0.7)^2} = 0.34 \text{ м}.$$

Ответ: 0,34 м.

Задача № 5 (30 баллов)

Для обработки на фрезерном обрабатывающем центре опоры привода симулятора ее заготовка устанавливается на столе приспособления (рис. 6). Заготовка в виде прямоугольного параллелепипеда опирается на три точечные базирующие опоры стола в горизонтальной плоскости А (точки 1, 2, 3) и одну боковую базирующую опору (4). На заготовку от фрезы действует сила резания Р=1000 Н, стремящаяся провернуть эту заготовку вокруг опоры (4). Угол между вектором силы Р и вертикальной плоскостью заготовки равен α =20°. Для исключения перемещения заготовки ее сверху прижимает опора от дополнительного рычага приспособления. вниз Определить место приложения (расстояния X и Y в системе координат ХОУ, показанной на виде сверху) и величину силы F прижимной опоры. Известно, что коэффициент трения прижимной опоры о поверхность заготовки равен f1=0,1. Коэффициент трения базирующих опор 1, 2, 3 о поверхность детали равен f2=0,2.

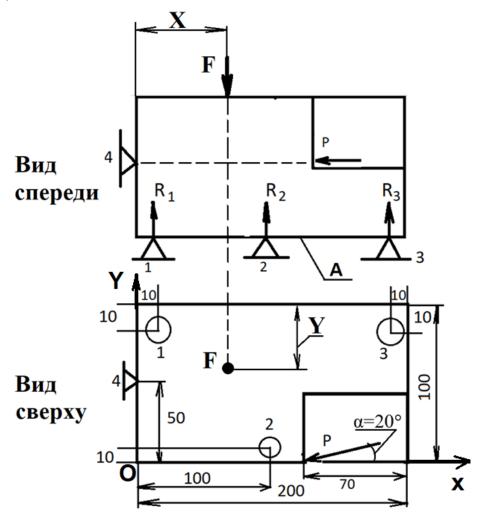


Рис. 6

Решение. При действии момента М силы Р заготовка может проворачиваться на базовой плоскости А. Для решения задачи необходимо записать уравнение моментов. Для определения плеч сил необходимо составить расчетную схему (рис. 7). Сила прижима F действует на плече L₀. Сила трения F1 в опоре 1 действует на плече L1, сила трения в опоре 2 действует на плече L2, сила трения в опоре 3 действует на плече L3, сила Р действует на плече L. Определим величины плеч исходя из размеров заготовки и координат опор. Определим длину плеча L действия силы Р. Длина плеча AC=AB+BC. Треугольники BCE и ABD – прямоугольные. Угол ABD=70°. Отсюда $AB=AD/\sin(70^{\circ})=50/0.94=53.2.$

BC=BE*sin(20°)=130*0,34=44,2. Отсюда L=53,2+44,2=97,4 мм.

Далее определим длину плеча силы F1. Из расчетной схемы получаем $L_1 = \sqrt{40^2 + 10^2} = 41,2$ мм. Определим L2, $L_2 = \sqrt{40^2 + 100^2} = 107,7$ мм. Определим L3, $L_3 = \sqrt{40^2 + 190^2} = 194,2$ мм.

Запишем уравнение моментов (без коэффициента запаса):

$$P*L=F*f1*L0+F*f2*(a*L1+b*L2+c*L3),$$

где a,b,с – коэффициенты показывающие доли силы F, соответствующие реакциям R1, R2, R3 опор 1, 2, 3.

Сумма коэффициентов а,b,с равна 1. При расположении точки приложения силы F в центре тяжести треугольника опор O, a=b=c=1/3, а реакции опор R1=R2=R3=F/3. Центр тяжести треугольника опор лежит на пересечении его медиан. Треугольник опор равнобедренный, его высота равна h=80 мм. Высота совпадает с медианой основания. Рассмотрим прямоугольный треугольник АОМ. Центр тяжести лежит на высоте, на расстоянии 1/3 от основания. Рассмотрим прямоугольный треугольник АОМ, в нем OM=MF-OF=40-1/3*h=13,3 мм, отсюда $AO=L_0 = \sqrt{100^2 + 13,3^2} =$ 100,9 мм. (рис. 7). Координаты точки приложения силы зажима равны: X=100 MM, Y=50+OM=50+13,3=63,3 MM.

Сила прижима заготовки равна:

$$F = \frac{PL}{f_1 L_0 + f_2 \cdot \frac{1}{3} (L_1 + L_2 + L_3)}$$

$$= \frac{1000 \cdot 97,4}{0,1 \cdot 100,9 + 0,2 \cdot \frac{1}{3} \cdot (41,2 + 107,7 + 194,2)} = 2955,1 \text{ H}.$$

быть приложена в Ответ: сила должна центре треугольника опор (123) X=100 мм Y=63,3 мм и равняться 2955,1 H.

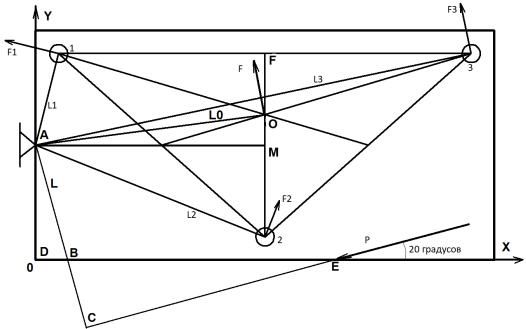


Рис. 7.

Методика определения баллов за решение задач олимпиады «Звезда» (технический профиль)

Номер	ер Проценты Краткое Подробное пояснение критериев							
критерия	(коэффиц)	формулирование	(комментарии, объяснения)					
(жюри	на макси-	правильности	(комментирии, оболенения)					
указывает	на макса мальные	или						
рядом с	баллы по	ошибочности						
оценкой)	задачам	решений						
1	2	3	4					
1	100%	Полное верное	Приведено полное решение задачи, включающее					
1	(1.0)	решение	следующие элементы:					
	(1.0)	pemenne	а) кратко описано и прокомментировано условие					
			задачи, записаны положения теории и					
			физические законы, закономерности,					
			применение которых необходимо для решения					
			задачи выбранным способом, в случае					
			необходимости приведены расчетные схемы со					
			всеми необходимыми обозначениями и					
			пояснения к схемам;					
			б) описаны все вводимые в решении буквенные					
			обозначения физических величин (за					
			исключением обозначений, используемых в					
			условии задачи и основных констант; описание					
			физических величин, встречающихся в задачах,					
			может производиться с помощью					
			математических соотношений, текстуально или					
			с помощью рисунков);					
			в) проведены все необходимые математические					
			преобразования и расчеты, приводящие к					
			правильному числовому ответу;					
			г) представлен правильный ответ в общем виде					
			и в численном значении с указанием единиц					
			измерения искомой величины.					
2	90%	Верное решение.	Все решения удовлетворяет критерию 1, но					
	(0.9)	Имеются	имеются незначительные неточности, помарки,					
		небольшие	плохо читаемые символы и отдельные слова,					
		недочеты, в	которые могут трактоваться в пользу участника					
		целом не	олимпиады. НЕ все вводимые в решении					
		влияющие на	буквенные обозначения физических величин					
		решение.	даются с пояснениями. НЕ все необходимые для					
			решения задачи обозначения приведены на					
2	60 600 /	D	расчетной схеме.					
3	6080%	Решение в целом	Все решения удовлетворяет критерию 1, но в					
	(0.60.8)	верное, однако	необходимых математических преобразованиях					
		содержит	или вычислениях допущены ошибки, и (или)					
		существенные	преобразования/вычисления не доведены до					
		ошибки (не	конца.					
		физические, а						
		математические)						

	20 2001	T =	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
4	3050%	Есть понимание	а) Представлены только положения и формулы,				
	(0.30.5)	физики явления,	выражающие физические законы, применение				
		но не найдено	которых необходимо для решения задачи, без				
		одно из	каких-либо преобразований с их				
		необходимых	использованием и без пояснений				
		для решения	преобразований, направленных на решение				
		уравнений, в	задачи, и ответа.				
		результате	Или				
		полученная	б) В решении отсутствует ОДНА из исходны				
		система	формул, необходимых для решения задачи (или				
		уравнений	отсутствует необходимое утверждение, лежаще				
		неполна и	в основе решения задачи), но присутствуют				
		невозможно	логически верные преобразования с				
		найти решение.	1 1				
		1					
			Или				
			в) В решении отсутствует необходимая со всеми				
			необходимыми обозначениями расчетная схема				
			и пояснения к ней, без которой решение				
			принципиально невозможно. Или				
			г) В ОДНОЙ из исходных формул, необходимых				
			для решения задачи (или в утверждении,				
			лежащем в основе решения), допущена ошибка,				
			но присутствуют логически верные				
			преобразования с имеющимися формулами,				
	10.200/		направленные на решение задачи.				
5	10-20%	Есть отдельные	Доказаны вспомогательные утверждения,				
	(0.10.2)	уравнения,	помогающие в решении задачи. Рассмотрены				
		относящиеся к	отдельные важные случаи при отсутствии				
		сути задачи, при	решения (или при ошибочном решении).				
		отсутствии	Сделана необходимая расчетная схема.				
		решения (или	Приведен правильный ответ без описания, как				
		при ошибочном	он получен.				
		решении)					
6	0	Решение	Нет ответа и нет ни одного из рассуждений,				
	(0)	неверное и	относящихся к сути задачи. Рассуждения есть,				
		отсутствуют	но они, очевидно, даны «для заполнения				
		какие-либо	страницы», они не относятся к сути задачи.				
		относящиеся к					
		рассуждения.					
		относящиеся к решению	страпицы», они не относятся к сути задачи.				

Примечания.

- 1. Максимальный балл за задачу нужно умножить на коэффициент второй колонки.
- 2. Если задача не относится к классу физических задач (например, чертежная, математическая или химическая и т.д.), то разработчики задачи должны дать соответствующие критерии (3-6 шт) как ее оценивать при частичном решении. Критерии дать на листе решений задач. Форма представления критериев должна быть аналогична вышеприведенной, чтобы на апелляции можно было четко объяснить, почему был применен тот или другой номер критерия.

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии наземного транспорта»

7-9 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1

Раннее утро. По центральным улицам города движется легковой автомобиль. Светофоры переведены в режим «Внимание» (мигающий желтый цвет), постов ДПС нет. Известно, что частота вращения колес составляет 500 об/мин, а радиус вращения колес автомобиля равен 0,3 м. Определите:

- 1. С какой скоростью движется автомобиль? (20 баллов)
- 2. Нарушает ли водитель автомобиля правила дорожного движения? (10 баллов)

Решение

1. Скорость движения автомобиля можно найти по формуле:

$$Va = \frac{2\pi R_{BK} \cdot n}{60}, \text{ M/c}; \tag{1}$$

где R_{BK} – радиус вращения колеса (м), n – частота вращения (об/мин).

Из формулы (1) видно, что $2\pi R_{\text{вк}}$ – это путь, проходимый автомобилем за один оборот колеса, n/60 – частота вращения ведущих колес автомобиля в секунду.

2. Подставляем известные значения величин в формулу (1):

Va =
$$\frac{2 \cdot 3,14 \cdot 0,3 \cdot 500}{60}$$
 = 15,7 m/c.

3. Чтобы узнать, нарушает ли водитель Правила дорожного движения, необходимо перевести скорость движения автомобиля в км/ч.

$$Va \cdot \frac{3600}{1000} = 15,7 \cdot 3,6 = 56,5 \text{ км/ч}.$$

Ответ 1: скорость автомобиля 15,7 м/с.

Ответ 2: Нарушения ПДД нет, автомобиль движется в городе со скоростью меньше 60 км/ч.

Пояснение к задаче 1

Правила дорожного движения РФ (ПДД РФ):

Пункт 10.2. В населенных пунктах разрешается движение транспортных средств со скоростью не более 60 км/ч, а в жилых зонах, велосипедных зонах и на дворовых территориях не более 20 км/ч.

Задача 2

Груженный, грузовой автомобиль массой 10 000 кг движется на испытаниях по горизонтальной сухой грунтовой дороге в хорошем состоянии со скоростью 15 м/с. Ваша задача состоит в том, чтобы без помощи приборов определить:

- 1. Силу сопротивления качению автомобиля; (15 баллов)
- 2. Потери мощности на качение автомобиля. (15 баллов)

Решение

1. Из пояснения к задаче имеем общее выражение для определения силы сопротивления качению автомобиля:

$$P_f = G_a \cdot f \cdot \cos\alpha, H. \tag{1}$$

2. Определим входящие в него параметры.

Вес автомобиля:

$$G_a = M_a \cdot g, H; \tag{2}$$

где M_a – масса автомобиля, g – ускорение свободного падения.

$$G_a = 10\ 000 \cdot 9.8 = 98\ 000\ H.$$
 (3)

Согласно условиям задачи, автомобиль движется по горизонтальной дороге, это означает, что α =0, a $\cos\alpha$ =1.

Определим значение коэффициента сопротивления качению. Для условий задачи (сухая грунтовая дорога в хорошем состоянии) из таблицы 1 (к Пояснениям к задаче 2) определяем, что

$$f = 0.023$$

3. Определим силу сопротивления качению автомобиля, для чего в формулу (1) подставим известные значения:

$$P_f = 98\ 000 \cdot 0.023 \cdot 1 = 2254\ H = 2.25\ kH.$$

4. Потери мощности на качение автомобиля определяются по формуле:

$$N_f = P_f \cdot V, \tag{4}$$

где P_f – сила сопротивления качению автомобиля, V – скорость автомобиля.

5. Определяем величину потерь мощности на качение автомобиля, для чего подставляем в формулу (4) величины входящих в нее значений:

$$N_f = 2254 \cdot 15 = 33.81 \text{ kBt}.$$

Ответ 1: Сила сопротивления качению автомобиля 2,25 кН.

Ответ 2: Потери мощности на качение автомобиля 33,81 кВт.

Пояснение к задаче 2

Из теории автомобиля известно, что при движении автомобиль, в общем случае, преодолевает силы сопротивления качению и подъему.

Сила сопротивления качения определяется из выражения:

$$P_f = G_a \cdot f \cdot \cos\alpha, H;$$
 (1)

где G_a – вес автомобиля (H); f – коэффициент сопротивления качению (зависит от типа дороги и ее состояния, берется из таблицы 1); α – угол подъема дороги.

Сила сопротивления подъему определяется из выражения:

$$P_f = G_a \cdot \sin\alpha, H;$$
 (2)

где G_a – вес автомобиля (H); α – угол подъема дороги.

Среднее значение коэффициента сопротивления качению

№ п/п	Виды покрытия и его состояния	Коэффициент сопротивления качению f	
1	2	3	
1	Цементобетон в отличном состоянии	0,015	
2	То же самое в удовлетворительном состоянии	0,02	
3	Асфальтобетон в отличном состоянии	0,015	
4	То же самое в хорошем состоянии	0,02	
5	Брусчатая мастерская	0,017	
6	Грунтовая сухая дорога в хорошем состоянии	0,023	
7	Грунтовая дорога мокрая	0,03	
8	Грунтовая мокрая дорога в плохом состоянии	0,1	
9	Влажный песок	0,08	
10	Сыпучий песок	0,2	
11	Хорошо укатанный снег	0,029	
12	Ровный лед	0,025	

Задача 3

Из показаний тахометра известно, что двигатель легкового автомобиля развивает обороты 3200 об/мин. При этом частота вращения ведущих колес машины -8,5 об/с.

Определите передаточное число трансмиссии автомобиля. (15 баллов)

Решение

1. Из пояснения к задачам 3 и 4 имеем общую формулу для определения передаточного числа передачи:

$$i_{\rm Tp} = \frac{w_1}{w_2},\tag{1}$$

где w_1 – угловая скорость ведущего элемента передачи; w_2 – угловая скорость ведомого элемента передачи.

Для условий задачи формула (1) будет иметь вид:

$$i_{\rm Tp} = \frac{n_{\rm AB}}{n_{\rm DM}},\tag{2}$$

где $n_{\text{дв}}$ – частота вращения двигателя (ведущий элемент); $n_{\text{вк}}$ – частота вращения колес автомобиля (ведомый элемент).

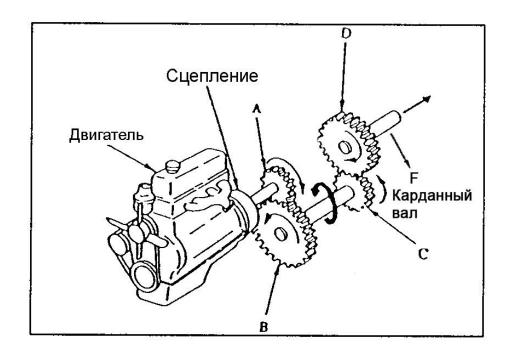
2. Преобразуем частоту вращения ведущих колес автомобиля

$$n_{BK} = n_{BK} \cdot 60 = 85 \cdot 60 = 510 \text{ об/мин,}$$

где n_{BK} – частота вращения колес автомобиля в об/мин.

3. Определим передаточное число трансмиссии автомобиля, для чего в формулу (2) подставим значение n_{BK} из формулы (3).

$$i_{\rm Tp} = \frac{3200}{510} = 6.2. \tag{4}$$


Ответ: передаточное число трансмиссии автомобиля 6,2.

Задача 4

На рисунке изображена схема привода автомобиля, состоящего из двигателя, сцепления, коробки передач, представленной двумя парами шестерен и карданным валом. Известно, что частота вращения коленчатого вала F равна 1000 об/мин. Шестерня A имеет 20 зубьев, шестерня B -40 зубьев, шестерня C-20 зубьев, шестерня D-40 зубьев.

Определить:

- 1. Частоту вращения на коленчатом валу двигателя; (20 баллов)
- 2. Какая передача (понижающая или повышающая) включена в данном случае в трансмиссии автомобиля. (5 баллов)

Решение

1. Из Пояснения к задачам 3 и 4 видно, передаточное отношение привода автомобиля можно найти из формулы:

$$i_{\mathrm{Tp}} = \frac{w_{\mathrm{AB}}}{w_{\mathrm{KB}}} = \frac{n_{\mathrm{AB}}}{n_{\mathrm{KB}}},\tag{1}$$

где $w_{\text{дв}}$ — угловая скорость коленчатого вала двигателя; $w_{\text{кв}}$ — угловая скорость карданного вала F; $n_{\text{дв}}$ — частота вращения коленчатого вала двигателя; $n_{\text{кв}}$ — частота вращения карданного вала F.

2. Преобразовав выражение (1), можно найти частоту вращения коленчатого вала двигателя:

$$n_{\text{\tiny JB}} = n_{\text{\tiny KB}} \cdot i_{\text{\tiny Tp}}. \tag{2}$$

3. Общее передаточное число привода, представленного на рисунке, учитывая информацию Пояснения к задачам 3 и 4, определяется из выражения:

$$i_{\rm Tp} = i_1 \cdot i_2 = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{Z_{\rm D}}{Z_{\rm C}},\tag{3}$$

где i_1 — передаточное отношение 1-й передачи (шестерни A и B); i_2 — передаточное отношение 2-й передачи (шестерни D и C); Z_A — число зубьев шестерни A; Z_B — число зубьев шестерни B; Z_C — число зубьев шестерни C; Z_D — число зубьев шестерни D.

4. Подставим в выражение (3) известные значения:

$$i_{\rm Tp} = \frac{40}{20} \cdot \frac{40}{20} = 4. \tag{4}$$

5. Подставляем полученное значение i_{TP} в выражение (2):

$$n_{\text{IIB}} = 1000 \cdot 4 = 4000 \text{ об/мин.}$$
 (5)

6. Частота вращения карданного вала F (1000 об/мин) оказалась меньше частоты вращения коленчатого вала двигателя (4000 об/мин). Из Пояснений к задачам 3 и 4 видно, что в данном случае в трансмиссии автомобиля включена понижающая передача.

Ответ 1: Частота вращения коленчатого вала двигателя $n_{\rm дв} = 4000$ об/мин.

Ответ 2: В трансмиссии включена понижающая передача.

Пояснение к задачам 3 и 4

Трансмиссия автомобиля имеет свои характерные технические характеристики. Одно из них – передаточное отношение. Для определения передаточного числа шестеренчатого механизма нужно знать угловые скорости или числа зубьев на ведомой и ведущей шестернях.

Таким образом, получаем соотношение: $i = w_1 / w_2 = z_2 / z_1$;

где: i — передаточное число; w_1 —угловая скорость ведущего вала; w_2 — угловая скорость ведомого вала; z_1 — число зубьев на ведомой шестерне, z_2 — число зубьев на ведущей шестерне.

На рис. 1 показан пример определения передаточного числа шестеренчатой передачи.

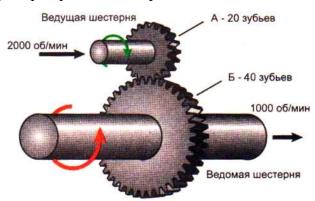


Рис.1

Трансмиссия автомобиля может состоять из нескольких передач, в этом случае под его передаточным числом понимается общее передаточное число, которое можно определить, как $\mathbf{i} = \mathbf{w}_1 / \mathbf{w}_2$, где \mathbf{w}_1 — угловая скорость ведущего элемента на входе в трансмиссию, которым является коленчатый вал двигателя, \mathbf{w}_2 — угловая скорость ведомого элемента, которым, в данном случае, можно считать колеса автомобиля.

Если угловая скорость ведущего элемента на входе в трансмиссию автомбиля превышает угловую скорость ведомого элемента, то такая передача называется понижающей, а если угловая скорость ведущего элемента на входе в трансмиссию автомобиля меньше угловой скорости ведомого элемента, то такая передача называется повышающей.

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии наземного транспорта»

10-11 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1

Экспериментальный грузовой автомобиль проходит дорожный тест. Проверяется эффективность действия тормозов. Регламент теста следующий. Машина движется равномерно со скоростью 25 м/с. Затем происходит ее интенсивное торможение по сухому асфальтобетонному покрытию в удовлетворительном состоянии на мерном участке протяженностью 20 м. После мерного участка дальнейшее торможение осуществляется уже на мокрой гравийной дороге в хорошем состоянии до скорости 30 км/ч. Коэффициент эксплуатационного состояния тормозов 1,4.

Необходимо определить общий тормозной путь автомобиля (25 баллов).

Решение

1. Определим снижение скорости автомобиля на мерном участке торможения протяженностью $20 \text{ м} (S_{T1})$. С этой целью используем формулу (2), приведенную в Пояснениях к задачам 1, 2 и 3.

$$S_{T1} = \frac{K_{9}(V_{H}^{2} - V_{K1}^{2})}{2g(\phi + f)},$$
(1)

где K_{3} — коэффициент эксплуатационного состояния тормозов; $V_{\rm H}$ — начальная скорость движения автомобиля; $V_{\kappa 1}$ — скорость автомобиля в конце мерного участка торможения, протяженность 20 м; g — ускорение свободного падения; ϕ — коэффициент сцепления шин с дорогой; f — коэффициент дорожного сопротивления. Значения ϕ и f берутся из таблицы f Пояснений к задачам f 1, 2 и f 3.

2. Преобразуем выражение (1) относительно величины $V_{\kappa 1}$:

$$V_{k1} = \sqrt{V_{H}^{2} - \frac{2gS_{T1}(\phi + f)}{K_{3}}}.$$
 (2)

3. Подставляем в формулу (2) численные значения, входящих в него параметров:

$$V_{k1} = \sqrt{25^2 - \frac{2 \cdot 9.8 \cdot 20(0.7 + 0.02)}{1.4}} = \sqrt{625 - 201.6} = \sqrt{423.4} = 20.5 \text{ m/c}. \tag{3}$$

4. Найдем тормозной путь при снижении скорости автомобиля до 30 км/ч.

$$S_{T2} = \frac{K_9(V_{K1}^2 - V_K^2)}{2g(\varphi_2 + f_2)},$$
(4)

где V_{κ} =30 км/ч; ϕ_2 – коэффициент сцепления шин на гравийной дороге; f_2 – коэффициент дорожного сопротивления на гравийной дороге.

5. Подставляем в формулу (4) численные значения, входящих в него параметров.

$$V_{K}=30 \text{ km/y}=8,3 \text{ m/c};$$

$$S_{T2} = \frac{1,4(20,5^2-8,3^2)}{2\cdot9.8(0,4+0,022)} = 59,5 \text{ m}.$$
 (5)

6. Определим общий тормозной путь автомобиля по формуле (6):

$$S_0 = S_{T1} + S_{T2} = 20 = 59,5 = 79,5 \text{ M}.$$
 (6)

Ответ: тормозной путь автомобиля 79,5 м.

Задача 2

Легковой автомобиль движется по горизонтальному хорошо укатанному участку снежной дороги. Затем интенсивно тормозит до полной остановки. Время торможения составило 4,5 с. Значение коэффициента эксплуатационного состояния тормозов для данного случая можно принять равным 1,0.

Определите начальную скорость движения автомобиля до торможения (20 баллов).

Решение

1. Определим время торможения автомобиля с помощью формулы (1) из Пояснений к задачам 1, 2 и 3.

$$t_{\text{Top}} = \frac{(V_{\text{H}} - V_{\text{K}})K_{9}}{g(\phi + f)},\tag{1}$$

где $V_{\rm H}$ – начальная скорость автомобиля; $V_{\rm K}$ – конечная скорость автомобиля; $K_{\rm S}$ – коэффициент эксплуатационного состояния тормозов; g – ускорение свободного падения; ϕ – коэффициент сцепления шин на снежной, хорошо укатанной дороге; f – коэффициент дорожного сопротивления.

2. Так как в данном случае V_{κ} =0, то формулу (1) можно упростить:

$$t_{\text{rop}} = \frac{V_{\text{H}} \cdot K_{\text{9}}}{g(\phi + f)}.$$
 (2)

3. Преобразуем выражение (2) относительно величины $V_{\rm H}$:

$$V_{H} = \frac{t_{\text{rop}} \cdot g(\phi + f)}{K_{2}}.$$
 (3)

4. Подставим в выражение (3) численные значения входящих в него параметров

$$V_{H} = \frac{4.5 \cdot 9.8 \cdot (0.3 + 0.029)}{1.4} = 10.36 \text{ m/c}.$$

Ответ: начальная скорость автомобиля до торможения 10,36 м/с.

Задача 3

Перед испытателями была поставлена задача определить, сможет ли груженный грузовой автомобиль массой 15 025 кг двигаться равномерно по горизонтальному участку асфальтобетонного шоссе в хорошем состоянии. Полностью дорожные испытания провести не удалось, но во время дорожного теста удалось определить, что сила тяги на ведущих колесах машины равна 2900 Н. Силой сопротивления воздуха в данном случае можно пренебречь.

Решите задачу, поставленную перед испытателями (25 баллов)

Решение

1. Силу сопротивления движению автомобиля по асфальтобетонному шоссе определяем из формулы (1):

$$P_f = G_a \cdot f \cdot \cos \alpha,$$
 (1)

где P_f — сила сопротивления движению; G_a — вес автомобиля; f — коэффициент сопротивления качению (берется из табл. в Пояснениях к задачам 1, 2 и 3); α — угол подъема дороги. Поскольку автомобиль движется по горизонтальному участку , тогда:

$$\alpha=0$$
; $\cos\alpha=1$.

2. Определим вес автомобиля

$$G_a=mg=15\ 025.9,8=147\ 245\ H.$$
 (2)

3. Определим силу сопротивления движению автомобиля, для чего подставляем в выражение (1) численные значения входящих в него параметров.

$$P_f = 147\ 245 \cdot 0,02 \cdot 1 = 2944,9\ H.$$
 (3)

4. Сравним величины силы тяги на ведущих колесах автомобиля (P_{κ} =2900 H) и силу сопротивления движению автомобиля (P_{f} =2944,9 H).

Получаем, что сила сопротивления движению автомобиля P_f больше, чем P_κ — сила тяги на его ведущих колесах. Это означает, что автомобиль будет двигаться с замедлением.

Ответ: в данных условиях автомобиль не может двигаться равномерно, он движется с замедлением.

Пояснение к задаче 1, 2 и 3

Из теории автомобиля известно, что время его торможения $t_{\text{тор}}$ определяется по формуле:

$$t_{\text{top}} = \frac{(V_{\text{H}} - V_{\text{K}})K_{9}}{g(\phi + f)}, c; \tag{1}$$

где $V_{\rm H}$ — начальная скорость автомобиля; $V_{\rm K}$ — конечная скорость автомобиля; $K_{\rm 9}$ — коэффициент, учитывающий эксплуатационное состояние тормозов; g — ускорение свободного падения; ϕ — коэффициент сцепления шин на снежной, хорошо укатанной дороге; f — коэффициент дорожного сопротивления.

Минимальный тормозной путь, проходимый автомобилем при интенсивном торможении от скорости $V_{\scriptscriptstyle H}$ до скорости $V_{\scriptscriptstyle K}$:

$$S_{\rm T} = \frac{K_9(V_{\rm H}^2 - V_{\rm K}^2)}{2g(\varphi + f)}, \, M. \tag{2}$$

Минимальный тормозной путь до полной остановки:

$$S_{\rm T} = \frac{K_9 V_{\rm H}^2}{2g(\omega + f)}, \, M. \tag{3}$$

№	D	Коэффициент	Коэффициент сцепления ф	
п/п	Виды покрытия и его состояния	сопротивления качению f	Сухое покрытие	Мокрое покрытие
1	2	3	4	5
1	Цементобетон в отличном состоянии	0,015	0,8	0,5
2	То же самое в удовлетворительном состоянии	0,02	0,8	0,5
3	Асфальтобетон в отличном состоянии	0,015	0,7	0,4
4	То же самое в удовлетворительном состоянии	0,02	0,7	0,4
5	Гравийное, в хорошем состоянии	0,022	0,7	0,4
6	Грунтовая сухая дорога в хорошем состоянии	0,023	0,6	-
7	Грунтовая дорога мокрая	0,03	_	0,3
8	Грунтовая мокрая дорога в плохом состоянии	0,1	_	0,3
9	Влажный песок	0,08	_	0,5
10	Сыпучий песок	0,2	0,6	_
11	Хорошо укатанный снег	0,029	0,3	0,2
12	Ровный лед	0,025	0,1	0,08

Из теории автомобиля известна зависимость между силой тяги автомобиля и силой сопротивления качения, то есть:

если P_к=P_f, то автомобиль движется равномерно;

если $P_{\kappa} < P_f$, то автомобиль движется с замедлением;

если $P_{\kappa} > P_f$, то автомобиль ускоряется.

Задача 4

Потери мощности в трансмиссии автомобиля $11~\mathrm{kBt}$, при КПД трансмиссии 0.85~(85~%). Определить:

- мощность двигателя автомобиля; (15 баллов)
- мощность, передаваемую на ведущие колеса автомобиля. (5 баллов)

Решение

1. Уравнение мощностного баланса автомобиля будет иметь вид:

$$N_{\text{IIB}} = N_{\text{TD}} + N_{\text{BK}}, \tag{1}$$

где $N_{\text{дв}}$ — мощность двигателя автомобиля; $N_{\text{тр}}$ — потери мощности в трансмиссии автомобиля; $N_{\text{вк}}$ — мощность, передаваемая на ведущие колеса автомобиля

2. Учитывая исходные данные, потери мощность в трансмиссии можно представить в виде:

$$N_{TP} = N_{JB} - N_{JB} \eta_{TP}, \qquad (2)$$

где $\eta_{\text{тр}} - K\Pi Д$ трансмиссии.

3. Выражение (2) преобразуем относительно величины $N_{\text{лв}}$:

$$N_{AB} = \frac{N_{Tp}}{(1 - \eta_{Tp})}.$$
(3)

4. Подставляем в выражение (3) численные значения, входящих в него параметров.

$$N_{\text{AB}} = \frac{11}{(1-0.85)} = 73.3 \text{ kBt.}$$
 (4)

Мощность на ведущих колесах автомобиля определим, преобразуя выражение (1): $N_{\text{вк}} = N_{\text{дв}} - N_{\text{тр}} = 73,3-11=62,3 \text{ кBT}.$

Ответ: мощность двигателя -73,3 кВт; мощность, передаваемая на ведущие колеса, -62,3 кВт.

Задача 5

Легковой автомобиль массой $1000~\rm kr$ преодолевает подъем в $15~\rm градусов$ со скоростью $10~\rm m/c$.

Определите мощность сопротивления подъему. (10 баллов)

Решение

1. Сила сопротивления подъему автомобиля определяется из выражения (1):

$$Pa=G_A \cdot \sin \alpha,$$
 (1)

где G_A – вес автомобиля; α – угол подъема.

2. Определим величину веса автомобиля

$$G_A = M_A \cdot g = 1000 \cdot 9,8 = 9800 \text{ H}.$$
 (2)

3. Определяем величину силы сопротивления подъему автомобиля, подставив в формулу (1) численные значения входящих в него параметров.

$$\sin 15^0 = 0.259$$
:

$$Pa=9800\cdot0,259=2538,2 \text{ H}.$$
 (3)

4. Мощность сопротивления подъему автомобиля определяется по формуле

$$N\alpha = P\alpha \cdot V$$
, (4)

где $N\alpha$ — мощность сопротивления подъему автомобиля; $P\alpha$ — сила сопротивления подъему автомобиля; V — скорость движения автомобиля.

5. Определим мощность сопротивления подъему автомобиля, для чего в выражение (4) подставим численные значения входящих в него параметров:

Ответ: мощность сопротивления подъему автомобиля 25,38 кВт.

Многопрофильная инженерная олимпиада «Звезда» «Технологии материалов»

7-9 классы

Заключительный этап

2020-2021

Задача. В школьной столовой установили контейнер для сбора пластиковых бутылок от питьевой воды, которую школьники выпивают во время обеда и перемен. Собранные бутылки планируется переработать* в пластиковую нить, которую школьники на уроках технологий используют для печати на 3D принтере. Из полученной нити планируется напечатать горшки для цветов и вазоны для зон рекреации школы.

* процесс превращения ПЭТ-бутылок в новый материал позволяет избежать попадания полиэтилентерефталата в окружающую среду и уменьшить количество отходов, направляемых на полигоны. Главной целью рециклинга является сохранение ресурсов в качестве сырьевых материалов. ПЭТ-бутылки могут быть полностью переработаны, в то время как на их разложение на полигонах уходит около 150 лет.

Задание. Необходимо предложить проект горшка для цветов внутренним объемом 5 литров, который будет напечатан на 3D принтере из пластиковой нити, полученной при переработке вторсырья (бутылок и пробок, собранных в школьной столовой).

Выполнение задания

Проектная часть

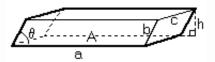
- 1. Разработайте оригинальный дизайн изделия, который указывал бы на то, что данный горшок для цветов сделан Вами или учениками вашего класса, тем более что технологии 3D печати это легко позволяют сделать.
- 2. Привести эскиз (чертеж) с указанием всех необходимых размеров изготавливаемого изделия.

Расчетная часть

- 1. Рассчитайте размеры изготавливаемого изделия исходя из необходимости получить заданный внутренний объем, используя геометрические формулы.
- 2. Определите массу полученного изделия, зная его размеры и плотность материала равна $1,4 \text{ г/см}^3$.

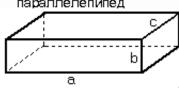
Для выполнения задания воспользуйтесь приложением 1.

Приложение 1.


Ципиндр

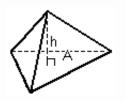
Объем: $\pi \cdot \mathbf{r}^2 \cdot \mathbf{h}$

Площадь боковой поверхности: $2 \cdot \pi \cdot \mathbf{r} \cdot \mathbf{h}$


Параллелепипед

A h $\mu m u$: a b c $\sin(\theta)$ Объем:

Прямоугольный .


параллелепипед

Объем: а в с

Площадь поверхности: $2 \cdot (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c})$

Пирамида

Объем: $\frac{1}{2} \cdot A \cdot h$

Конус Усеченный конус

Объем: $\frac{1}{2} \cdot \pi \cdot \mathbf{r}^2 \cdot \mathbf{h}$

Площадь боковой поверхности: $\boldsymbol{\pi} \cdot \mathbf{r} \cdot \mathbf{l}$

Объем:

 $\frac{1}{3} \cdot \pi \cdot h \cdot \left(a^2 + a \cdot b + b^2\right)$

Площадь боковой поверхности: $\pi \cdot (\mathbf{a} + \mathbf{b}) \cdot \mathbf{l}$

 $\pi \cdot (\mathbf{a} + \mathbf{b}) \cdot \sqrt{\mathbf{h}^2 + (\mathbf{b} - \mathbf{a})^2}$ иши:

Сферический сегмент Сфера

Объем: $\frac{4}{3} \cdot \pi \cdot \mathbf{r}^3$

Площадь поверхности: $\mathbf{4} \cdot \boldsymbol{\pi} \cdot \mathbf{r}^2$

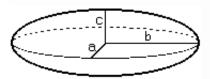
Объем: $\frac{1}{3} \cdot \pi \cdot h^2 \cdot (3 \cdot r - h)$

Площадь шаровой поверхности: $2 \cdot \pi \cdot \mathbf{r} \cdot \mathbf{h}$

Сферический треугольник

Площадь: $(\mathbf{A} + \mathbf{B} + \mathbf{C} - \boldsymbol{\pi}) \cdot \mathbf{r}^2$

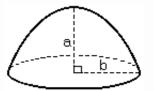
Top



Объем:

$$\frac{1}{4}\cdot \pi^2\cdot (a+b)\cdot (b-a)^2$$

Площадь поверхности: $\pi^{-2} \cdot \left(\mathbf{b^2} - \mathbf{a^2}\right)$


Эллипсоид

Объем:

$$\frac{4}{3} \cdot \pi \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}$$

Параболоид

Объем:

$$\frac{1}{2} \cdot \pi \cdot b^2 \cdot a$$

Многопрофильная инженерная олимпиада «Звезда» «Технологии материалов»

10-11 классы

Заключительный этап

2020-2021

Задача. В школьной столовой установили контейнер для сбора пластиковых бутылок от питьевой воды, которую школьники выпивают во время обеда и перемен. Собранные бутылки планируется переработать* в пластиковую нить, которую школьники на уроках технологий используют для печати на 3D принтере. Из полученной нити планируется напечатать горшки для цветов и вазоны для зон рекреации школы.

* процесс превращения ПЭТ-бутылок в новый материал позволяет избежать попадания полиэтилентерефталата в окружающую среду и уменьшить количество отходов, направляемых на полигоны. Главной целью рециклинга является сохранение ресурсов в качестве сырьевых материалов. ПЭТ-бутылки могут быть полностью переработаны, в то время как на их разложение на полигонах уходит около 150 лет.

Задание. Необходимо предложить проект вазона для цветов внутренним объемом 25 литров, который будет напечатан на 3D принтере из пластиковой нити, полученной при переработке вторсырья (бутылок и пробок, собранных в школьной столовой).

Выполнение задания

Проектная часть

- 1. Разработайте оригинальный дизайн изделия, который указывал бы на то, что данный вазон для цветов сделан Вами или учениками вашего класса, тем более что технологии 3D печати это легко позволяют сделать.
- **2.** Привести эскиз (чертеж) с указанием всех необходимых размеров изготавливаемого изделия.

<u>Расчетная часть</u>

- **1.** Рассчитайте размеры изготавливаемого изделия исходя из необходимости получить заданный внутренний объем, используя геометрические формулы.
- **2.** Определите массу полученного изделия, зная его размеры, а плотность материала равна $1,4 \text{ г/cm}^3$.
- **3.** Определите сколько бутылок потребуется собрать чтобы изготовить ваш вазон если одна пустая пластиковая бутылка весит 25 г.

Для выполнения задания воспользуйтесь приложением 1.

Приложение 1

Ципиндр

Объем: $\pi \cdot \mathbf{r}^2 \cdot \mathbf{h}$

Площадь боковой поверхности: 2 - π - \mathbf{r} - \mathbf{h}

Объем: A h $\mu m u$: a b c $sin(\theta)$

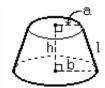
Параллелепипед

Пирамида

Объем: **a**-**b**-c

Площадь поверхности: $\mathbf{2} \cdot (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c})$

<u>Конус</u>



Объем: $\frac{1}{3} \cdot \pi \cdot \mathbf{r}^2 \cdot \mathbf{h}$

Площадь боковой поверхности: $\boldsymbol{\pi} \cdot \mathbf{r} \cdot \mathbf{l}$

Объем: $\frac{1}{3} \cdot A \cdot h$

Усеченный конус

Объем:

 $\frac{1}{3}\cdot\pi\cdot h\cdot \left(a^2+a\cdot b+b^2\right)$

Площадь боковой поверхности: $\pi \cdot (\mathbf{a} + \mathbf{b}) \cdot \mathbf{l}$

 $\pi \cdot (\mathbf{a} + \mathbf{b}) \cdot \sqrt{\mathbf{h}^2 + (\mathbf{b} - \mathbf{a})^2}$

Сферический сегмент

Объем: $\frac{4}{3} \cdot \pi \cdot r^3$

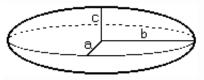
Площадь поверхности: $4 \cdot \pi \cdot \mathbf{r}^2$

Сфера

Объем: $\frac{1}{3} \cdot \pi \cdot h^2 \cdot (3 \cdot r - h)$

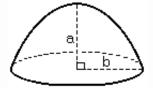
Площадь шаровой поверхности: 2 - π - $\mathbf{r} \cdot \mathbf{h}$

Сферический треугольник


Площадь: $(\mathbf{A} + \mathbf{B} + \mathbf{C} - \boldsymbol{\pi}) \cdot \mathbf{r}^2$

Top

 $\frac{1}{4} \cdot \pi^2 \cdot (a+b) \cdot (b-a)^2$


Площадь поверхности: $\pi^{2} \cdot \left(b^{2} - a^{2}\right)$

Эллипсоид

Объем:

Параболоид

Объем:

 $\frac{1}{2} \cdot \pi \cdot b^2 \cdot a$

Многопрофильная инженерная олимпиада «Звезда» «Технологии материалов»

10-11 классы

Заключительный этап

2020-2021

Критерии оценивания

Номер задания	Количество баллов	Пояснения
№ 1 проектная часть	0-20	Максимальное количество баллов ставиться
1		за оригинальный и функциональный дизайн.
№ 2 проектная часть	0-20	Максимальное количество баллов ставиться
		при наличии правильно выполненного эскиза
		с указанием всех размеров, необходимых для
		изготовления изделия.
№ 1 расчетная часть	0-20	Максимальное количество баллов ставиться,
		если задача по нахождению размеров горшка
		для цветов решена правильно. Решение
		задачи подробное и содержит необходимые
		пояснения.
№ 2 расчетная часть	0-20	Максимальное количество баллов ставиться,
		если задача по нахождению массы изделия
		(горшка) решена правильно. Решение задачи
		подробное и содержит необходимые
		пояснения.
№ 3 расчетная часть	0-20	Максимальное количество баллов ставиться,
		если задача по нахождению необходимого
		количества пластиковых бутылок для
		изготовления пластиковой проволоки решена
		правильно. Решение задачи подробное и
		содержит необходимые пояснения.

Многопрофильная инженерная олимпиада «Звезда» «Технологии материалов»

7-9 классы

Заключительный этап

2020-2021

Критерии оценивания

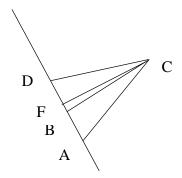
Номер задания	Количество баллов	Пояснения
№ 1 проектная часть	0-25	Максимальное количество баллов ставиться
		за оригинальный и функциональный дизайн.
№2 проектная часть	0-25	Максимальное количество баллов ставиться
		при наличии правильно выполненного
		эскиза с указанием всех размеров,
		необходимых для изготовления изделия.
№1 расчетная часть	0-25	Максимальное количество баллов
		ставиться, если задача по нахождению
		размеров вазона для цветов решена
		правильно. Решение задачи подробное и
		содержит необходимые пояснения.
№2 расчетная часть	0-25	Максимальное количество баллов
		ставиться, если задача по нахождению
		массы изделия (вазона) решена правильно.
		Решение задачи подробное и содержит
		необходимые пояснения.
Итого	0-100	

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии кораблестроения и водного транспорта»

7-8 классы

Заключительный этап

2020-2021


Задания, ответы и критерии оценивания

<u>Задача 1 (25 баллов)</u>

Определение положения судна относительно видимых ориентиров называется «крюйс-пеленг».

Представьте, что вы — капитан судна, идущего с постоянной скоростью v=250 м/мин и постоянным курсом мимо скалы. В 15-00 скала с борта судна была видна под углом 45° к курсу, а в 15-30 — под углом 85° к курсу. Определите, под каким углом будет видна скала с борта судна в 16-00, а также расстояние от скалы до линии курса.

Решение:

Пусть точка C – это скала, точка A – положение судна в 15-00, точка B – положение судна в 15-30.

В треугольнике ABC известно: AB=v*30 мин=7500 м, угол CAB=45°, угол CBA=180°-85°=95°, значит, угол ACB=180°-(95°+45°)=40°.

По теореме синусов

 $BC/\sin(CAB) = AB/\sin(ACB) => BC = AB*\sin(CAB)/\sin(ACB) =$

 $BC=AB*\sin(45^{\circ})/\sin(40^{\circ})==7500*0,7/0,64=8203,1 \text{ M}.$

Опустим перпендикуляр из точки С на продолжение прямой AB, получим точку F. Длина этого перпендикуляра CF=BC*sin(85°)=8171.9 м и есть расстояние от линии курса до скалы. При постоянной скорости и курсе с 15-30 до 16-00 судно пройдет расстояние BD=AB. По теореме косинусов его расстояние до скалы в этот момент будет

$$CD = \sqrt{AB^2 + BC^2 - 2 * AB * BC * \cos(85^0)} =$$

= $\sqrt{7500^2+8203,1^2-2*7500*8203,1*0,087}$ =10622 м. Угол, под которым будет видна скала из т.D, равен 180° -arcsin(CF/CD) \approx 129.7°.

Ответ: 129.7°

Задача 2 (25 баллов)

Пиратский корабль «Черная Жемчужина» убегает от военного корабля «Перехватчик» по прямой, корабли идут с постоянной скоростью, причем скорость пиратов в 1.1 раза больше, чем у военных, а те движутся со скоростью 15 км/ч. Видя, что пираты уходят, военные моряки выстрелили по ним из пушки, когда расстояние между кораблями было 0.8 км. Попадет ли ядро в «Черную Жемчужину», если начальная скорость его была v0=100 м/с, а пушка стреляла под углом 45° к горизонту? Будет ли перелет или недолет? Сопротивлением воздуха пренебречь.

Решение:

Ядро из пушки движется по горизонтали по закону $x=x_0+v_0xt$, а по вертикали – по закону $y=y_0+v_0yt-gt^2/2$. Пусть в момент выстрела координаты военного корабля (x_0,y_0) , тогда координаты пиратского – $(x_0+0.8 \text{ км},y_0)$. Пусть $y_0=0$. Время падения ядра t_n таково, что $y(t_n)=y0=0$, отсюда $t_n=2*v_0y/g$. На момент падения ядро пролетит по горизонтали расстояние $x(t_n)=x_0+v_0x*t_n=x_0+2*v_0x*v_0y/g$.

Проекции скорости ядра равны: $v_{0x}=v_0*\cos(45^\circ)$, $v_{0y}=v_0*\sin(45^\circ)$, откуда $x(t_n)=x_0+2*v_0^2*\sin(45^\circ)*\cos(45^\circ)/g=x_0+v_0^2/g=x_0+100^2/9,81=x0+1019.4$ м. За время $t_n=20.4$ с пиратское судно будет иметь координату x0+800 м+ $t_n*1,1*15*1000$ м/3600 с=x0+893,4 м. Таким образом, ядро упадет более чем в 120 м дальше «Черной Жемчужины» (перелет).

Ответ: Перелет.

Задача 3 (20 баллов)

На ручной кабестан (механизм для передвижения груза, состоящий из вертикального вала, на который при вращении наматывается цепь) (блок радиусом R=0,98 м) наматывается якорная цепь при подъеме якоря. Сколько кругов вокруг кабестана проходят матросы при подъеме якоря с глубины 100 м при высоте борта судна до клюза (круглое, овальное или прямоугольное отверстие в фальшборте, палубе или борту, служащее для пропускания и уменьшения перетирания якорной цепи) 5 м, если они при этом должны давить на рукоять кабестана на расстоянии с=0,5 м от края блока? Какую работу при этом они выполняют, если масса якоря — m=500 кг? Массой цепи и трением пренебречь.

Решение:

Один виток цепи на блоке кабестана составит $2\pi R$ м. Общая длина выбираемой цепи — L=105 м. Тогда число витков равно $n=L/(2\pi R)=17$, ему соответствует число кругов, пройденных матросами, а их путь $L1=n*2\pi*(R+c)==158,085$ м. Так как кабестан -= неподвижный блок, то выигрыша в силе он не дает и матросы преодолевают действие на якорь силы тяжести, совершая работу:

A=m*g*L1=500*9,81*158,085=775406,642 Дж=775,4 кДж.

Ответ: 775,4 кДж.

Задача 4 (15 баллов)

Судно ледового класса массой m1=50 т, движущееся равномерно со скоростью v1=5 узлов, сталкивается с плавучим айсбергом массой m2=30 т, дрейфовавшим навстречу также равномерно со скоростью v2=0,5 узла. Считая столкновение мгновенным, абсолютно упругим и пренебрегая сопротивлением воды и местными смятиями, определить скорости судна и айсберга после столкновения, а также изменение кинетической энергии судна.

Решение:

По закону сохранения импульса:

$$m_1V_{1*} + m_2V_{2*} = m_1V_1 + m_2V_2,$$
 (1)

где: V_{1*} и V_{2*} - начальные скорости объектов, V_1 и V_2 – скорости объектов после столкновения.

По закону сохранения энергии:

$$m_1 V_{1*}^2 / 2 + m_2 V_{2*}^2 / 2 = m_1 V_1^2 / 2 + m_2 V_2^2 / 2$$
 (2)

Уравнения 1 и 2 можно преобразовать:

$$m_1(V_{1*} - V_1) = m_2(V_2 - V_{2*})$$

 $m_1(V_{1*}^2 - V_1^2) = m_2(V_2^2 - V_{2*}^2)$

Решая систему из двух уравнений, получим:

$$V_1 = V_{1*}(m_1 - m_2) / (m_1 + m_2) + V_{2*}(2m_2) / (m_1 + m_2)$$

$$V_2 \!\! = V_{1*}(2\ m_1) \ / \ (m_1 + m_2) \!\! + V_{2*}(\ m_2 - m_1) \! / \ (m_1 + m_2)$$

или

 $V_1 = 5*20000/80000+0,5*60000/80000=1,25+0,375=1,625$ узлов.

 $V_2 = 5*100000/80000 + 0,5*(-20000)/80000 = 6,25-0,125 = 6,125$ узлов.

Задача 5 (15 баллов)

Медный сферический буй в воздухе весит 1,96 H, а в воде 1,47 H. Определите является этот буй сплошным или полым. Плотность меди $\rho_{\rm M} = 8900~{\rm kg/m}^3$.

Решение:

Архимедова сила равна: $F_A = P_{BO3} - P_{BOJ} = 1,96 - 1,47 = 0,49 \text{ кг/м}^3$

Определим объем буя: $F_A = g \rho_{BOZ} V$, следовательно:

$$V = \frac{F_A}{g\rho_{BOД}} = \frac{0.49}{9.8*1000} = 0.00005 \text{ m}^3$$

Определим массу буя: P=mg, следовательно: m=P/g=1,96/9,8 = 0,2 кг Плотность тела массой m и объема V равна: ρ =m/V = 0,2/0,00005= 4000кг/м³ Т.к. ρ < ρ _м, следовательно, буй полый.

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии кораблестроения и водного транспорта»

9-11 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1 (10 баллов)

Корабль движется при помощи гребного винта из 4-х лопастей. Пульсации давления воды от работы винта в кормовой части создают так называемую «лопастную» вибрацию корпуса с частотой 12 Гц. Какова (в оборотах в минуту) частота вращения гребного вала?

Решение:

Пусть частота вращения гребного вала равна n об/мин. Тогда в минуту с учетом 4-х лопастей винт создает 4*n пульсаций в минуту или 4*n/60 пульсаций в секунду.

Корпус корабля вибрирует с частотой действующих на него пульсаций, таким образом: $4*n/60 = 12 \Gamma$ ц. Отсюда n=12*60/4=180 об/мин.

Ответ: 180 об/мин.

<u>Задача 2 (20 баллов)</u>

Жесткость упругой тонкой оболочки батисферы такова, что при повышении наружного давления на каждые 10 атмосфер радиус сферы уменьшается на 0.01%. На сколько процентов (%) уменьшится исходный объем батисферы при погружении на глубину 5 км в морскую воду, плотность которой ρ =1025 кг/м³?

Решение:

Пусть исходный (в непогруженном состоянии) радиус оболочки равен R.

На глубине Т=5 км наружное давление равно:

 $p=\rho*g*T=1025$ кг/м³*9.8 м/с²*5000 м=50225000 Па=502,25 атм.

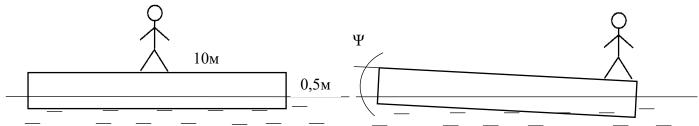
При этом с учетом жесткости сферы её радиус уменьшится на

 $\Delta R = 0.01\%/10 \text{ atm} * 502,76250 \text{ atm} = 0.5\%,$

и станет равным

 $R_1 = (100-0.5)\% *R \approx 99,5\% *R.$

Объем батисферы в исходном состоянии $V=4/3*\pi^*R^3$, в сжатом состоянии – $V_1=4/3*\pi^*R_1^{*3}$.


Изменение объема составит

 $\Delta V = (V - V_1)/V_1 * 100\% = (R^3 - R_1^3)/R^3 * 100\% = (1 - (R_1/R)^3) * 100\% = (1 - (R_1/R)^$

Ответ: 1,5%.

Задача 3 (40 баллов)

Понтон, плавающий в пресном водоеме (плотность воды ρ =1000 кг/м³), имеет форму параллелепипеда (длина-10м, ширина=2м, высота=0.5м). В центре понтона стоит школьник массой m=50 кг, при этом осадка (уровень погружения) понтона одинакова по всей длине понтона и составляет T=10 см. Какой дифферент (угол наклона к поверхности воды) у приобретет понтон, если школьник встанет на кормовом крае и система придет в равновесие? Крен (поворот объекта вокруг его продольной оси) не учитывать, угол у считать малым.

Решение:

Вытесняемый в исходном варианте понтоном объем воды (объемное водоизмещение) равен V_0 =10 м * 2 м * T=2 м³. Очевидно, как бы ни перемещался школьник по понтону, этот объем не изменится. Однако форма погруженного объема при переходе школьника на корму будет представлять собой уже не параллелепипед, а призму, в основании которой – трапеция. Основаниями трапеции будут осадки в носовой и кормовой части понтона T_{κ} и составит T_{μ} соответственно.

В состоянии равновесия объем призмы равен $V_{\pi} = (T_{\kappa} + T_{H})/2*10*2$ м³= V_{0} , т.е. $T_{\kappa} + T_{H} = 2T$.

Кренящий момент относительно центра понтона от веса школьника будет $M_{\text{m}}=m^*g^*10/2$ Н·м. Восстанавливающий момент от сил Архимеда равен $M_A=V_0*\rho^*g^*L$, где L – расстояние от центра понтона до геометрического центра «погруженной призмы».

Найдем L, для этого разобъем трапецию на прямоугольник с высотой $T_{\rm H}$ и прямоугольный треугольник с меньшим катетом $(T_{\rm K}-T_{\rm H})$. Площадь прямоугольника $S_1=10^*$ $T_{\rm H}$, координата его центра совпадает с координатой центра понтона, т.е. разница между ними $x_1=0$. Площадь треугольника $S_2=10^*(T_{\rm K}-T_{\rm H})/2$, координата его центра отстоит на 10/3 м от кормы, т.е. относительно центра понтона $x_2=5-10/3=5/3$ м. Координата центра составной трапеции $L=(S_1^*x_1+S_2^*x_2)/(x_1+x_2)$.

Из условия равновесия $M_{\text{III}} = M_{\text{A}}$ следует, что

$$\begin{split} L &= m*10/(2*V_0*\rho) = (S_1*x_1 + S_2*x_2)/(x_1 + x_2) = (10*T_{_{\rm H}}*0 + 10*\frac{T_k - T_{_{\rm H}}}{2}*5/3)/(0 + 5/3). \\ &m*10/(2*V_0*\rho) = 10*\frac{T_k - T_{_{\rm H}}}{2} \\ &m/(V_0*\rho) = T_{_{\rm K}} - T_{_{\rm H}} \end{split}$$

В итоге получили систему 2-х уравнений:

 $T_{\scriptscriptstyle K} + T_{\scriptscriptstyle H} = 2T$

 $T_{K}-T_{H}=m/(V_{0}*\rho).$

Складывая их, получим:

 $T_{\scriptscriptstyle K}\!\!=\!T\!+\!m\!/(2^*V_0^*\rho)\!\!=\!\!0,1\!+\!50\!/(2^*2^*1000)\!\!=\!\!0,1\!+\!0,\!0125\!=\!\!0,\!1125~{\scriptscriptstyle M}.$

Тогда T_H =2T- T_K =0,2 - 0,1125 =0.0875 м. Угол наклона понтона будет малым и примерно равным собственному тангенсу: ψ = $(T_K$ - $T_H)/10$ =2,5*10⁻³ рад = 0,143°.

Ответ: 0,143°

Задача 4 (15 баллов)

При постановке судна в сухой док оно ставится на специальные ящики – киль-блоки, изготавливаемые из разных пород дерева. Нижняя часть каждого блока изготовлена из дуба и имеет жесткость K1=100 кН·мм, верхняя — из сосны и имеет жесткость K2=50 кН·мм. Судно массой 10 т установлено на 5 одинаковых киль-блоков. Насколько просядет судно на киль-блоках?

Решение:

Дубовую и сосновую часть киль-блока можно считать *последовательно* соединенными пружинами с жесткостями K1 и K2, для которых справедлив закон Кирхгофа: 1/K3=1/K1+1/K2, где K3 — полная жесткость киль-блока. Весь же набор киль-блоков является пакетом *параллельно* соединенных пружин, для которых справедлив закон Кирхгофа: K4=5*K3=5*K1*K2/(K1+K2). Под действием силы тяжести G=10000 кг * 9,81 м/с² = 98,1 кH судно на кильблоках просядет на расстояние w=G/K4=5*G*(K1+K2)/(K1*K2)=5*98,1*150/5000=14,715 мм, т.е. примерно на 1,5 см.

Ответ: 1,5 см.

Задача 5 (15 баллов)

Многие современные суда и корабли изготавливают не из металла, а из композита — многослойного стеклопластикового или углепластикового материала.

алюминиевого сплава И катер ИЗ стеклопластика имеют площадь поверхности корпуса. Толщина одинаковую корпуса алюминиевого катера t_{an} =3 мм, плотность алюминиевого сплава ρ_{an} =2690 $\kappa \Gamma/M^3$. Плотность стеклопластика — ρ_{cn} =1467 $\kappa \Gamma/M^3$. Жесткость конструкции пропорциональна $E*t^3$, где E - модуль упругости (у стеклопластика – E_{cn} =0,2*10⁵ МПа, у алюминиевого сплава – E_{an} =0,7*10⁵ МПа), t - толщина. Удастся ли выиграть в массе катера и сколько %, если делать его из стеклопластика таким же жестким, как и алюминиевый?

Решение:

Определим необходимую толщину стеклопластика. Из условия эквивалентной жесткости следует, что $E_{cn}^{} t_{cn}^{} = E_{an}^{} t_{an}^{}$, откуда:

 $t_{\text{сп}} = t_{\text{ал}} * \sqrt[3]{E_{\text{ал}}/E_{\text{сп}}} = 0.03*\sqrt[3]{0.7/0.2} = 4.55$ мм. Тогда 1 кв.м алюминиевого корпуса весит $t_{\text{al}} * 1* \rho_{\text{al}} = 8.07$ кг, а 1 кв. м стеклопластикового корпуса — $t_{\text{сп}} * 1* \rho_{\text{сn}} = 6.68$ кг. Выигрыш в массе составит (8.07 - 6.68)/8.07*100% = 17.2%.

Ответ: 17,2%

Многопрофильная инженерная олимпиада «Звезда» «Электроэнергетика»

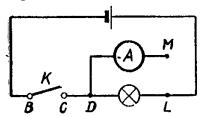
7-8 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1 (10 баллов)

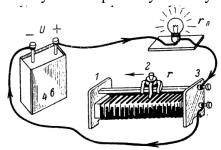

В коробке перемешаны медные винты и железные шурупы. Каким образом можно быстро рассортировать их, имея аккумулятор, достаточно длинный медный изолированный провод и железный стержень?

Решение

Медный провод наматывают на железный стержень, а концы провода присоединяют к аккумулятору. Стержень намагничивается и притягивает к себе шурупы из коробки. Т.е. сделали электромагнит.

Задача 2 (20 баллов)

Амперметр присоединен к цепи в точке D. Куда надо присоединить клемму M амперметра, чтобы он не был испорчен и показывал ток в цепи. Если амперметр заменить вольметром, то куда надо присоединить клемму M, чтобы измерить падение напряжения на лампе.



Решение

клемму М амперметра необходимо подключить к точке В при разомкнутом ключе К. (амперметр включается в цепь последовательно для измерения силы тока). Вольтметр присоединяется параллельно лампе, то есть к точке L.

Задача 3 (20 баллов)

Лампочка, рассчитанная на напряжение 4,5 В и силу тока 0,3 А, включена последовательно с реостатом сопротивлением 10 Ом и аккумулятором напряжением 4 В. В каком из положений движка реостата 1, 2, или 3, через лампочку будет проходить, максимальный ток. Ответ поясните решением. Для пояснения решения задачи составить принципиальную электрическую схему.

Решение

Сопротивление лампочки Rл=Uл/Iл=15 Ом

В положении 1 включен весь реостат, Rp=10 Ом Сопротивление цепи $r=R\pi+Rp=25$ Ом Ток I=U/r=0,16 А.

В положении 2 включена половина реостата, Rp=5 Ом

Сопротивление цепи $r=R_{\pi}+R_{p}=20$ Ом Ток I=U/r=0.2 А.

В положении 3 включена реостат выведен из цепи, Rp=0 Ом Сопротивление цепи $r=R\pi+Rp=15$ Ом

Ток I=U/r=0,266 А.

Максимальный ток проходит, когда реостат выведен из цепи.

Правильный ответ без решения 5 баллов.

Задача 4 (20 баллов)

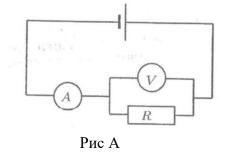
Имеются 2 фонарика. 1 фонарик питается от батарейки напряжением 2,5 В, сопротивление лампочки фонарика 8,3 Ом. 2 фонарик питается от батарейки напряжением 4,5 В, сопротивление лампочки фонарика 15 Ом. Лампочка какого фонарика светит ярче. Ответ поясните решением

Решение

 $I_1=U_1/r_1=2,5/8.3=0,3$ A сила тока в первом фонарике.

 $I_2 = U_2/r_2 = 4,5/15 = 0,3$ A сила тока во втором фонарике

Мощность выделяемая на первом фонарике. P=UI=0,75 Вт


Мощность выделяемая на втором фонарике. P=UI=1,35 Bт.

Второй фонарик светит ярче, т.к. выделяемая мощность больше.

Правильный ответ без решения 5 баллов.

Задача 5 (30 баллов)

Для того, чтобы измерить сопротивление резистора R, собрали электрическую цепь (рис. а). Показания вольтметра и амперметра были соответственно равны U_1 и I_1 . Затем для повторения эксперимента, используя то же оборудование, была собрана электрическая цепь (рис. б). На этот раз показания приборов были U_2 и I_2 . Чему равно значение сопротивления R? Напряжение аккумулятора одинаковое.

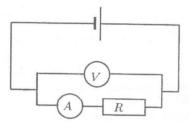


Рис. Б

Решение

Показания приборов в схемах А) и Б) разные, потому что амперметр и вольтметр не идеальные (5 баллов).

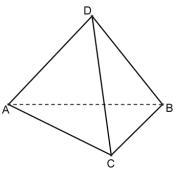
Пусть R_A - сопротивление амперметра, а E - напряжение аккумулятора, Закон Ома для схемы а) $U_1 + I_1 R_A = E$

для схемы б)
$$I_2R + I_2R_A = U_2 = E$$
. (10 баллов)

Из совместного решения этих уравнений получим (15 баллов)

$$R = U_2/I_2 - ((U_2 - U_1)/I_1)$$

Многопрофильная инженерная олимпиада «Звезда» «Электроэнергетика»


Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1 (10 баллов)

Из проволоки постоянного сечения спаян правильный тетраэдр. К двум его вершинам приложено напряжение 220 вольт, а к двум другим подключен идеальный вольтметр. Найти показания вольтметра.

Решение

Если к двум вершинам такого тетраэдра подключить напряжение, то две другие совершенно эквивалентны, а значит и потенциалы их одинаковы. Учитывая, что идеальный вольтметр не вносит изменений и показывает разность потенциалов, то ответ – ноль.

Задача 2 (20 баллов)

В ходе цикла Карно рабочее вещество получает от нагревателя количество теплоты Q = 300 кДж. Температуры нагревателя и холодильника равны соответственно $T_1 = 450 \text{ K}$ и $T_2 = 280 \text{ K}$. Определить работу A, совершаемую рабочим веществом за цикл.

Решение

КПД цикла Карно $\eta = (T_1-T_2)/T_1$

$$\eta = A/Q\,$$

$$A=Q\cdot((T_1-T_2)/T_1)$$

Задача 3 (20 баллов)

В елочной гирлянде было 30 лампочек четырех цветов, соединенных последовательно: синий, красный, желтый, зеленый, синий и так далее. В гирлянде перегорели две лампочки одного цвета. Для того чтобы починить гирлянду ее разрезали на три части. При починке гирлянды, полученные отрезки соединили параллельно. Оказалось, что сопротивление всей гирлянды уменьшилось ровно в 15 раз. Найти сколько лампочек может быть в каждом из отрезков, на которые разделили гирлянду и во сколько раз увеличилась сила тока в

цепи. Сопротивление всех лампочек одинаково равно г. (Изобразить схему соединения исходной гирлянды и гирлянды после восстановления)

Решение

Сопротивление всей исходной гирлянды 30r. Пусть после того как гирлянду разрезали в ней осталось всего 28 лампочек в отрезках из x, y и 28-x-y лампочек в каждом. Тогда сопротивление всей получившейся при параллельном соединении цепи можно найти из уравнения:

$$1/xr+1/yr+1/(28-x-y)r=1/2r$$

Решая данное уравнение получаем, что отрезки гирлянды будут иметь длины 3, 10, 15 лампочек соответственно.

Закон Ома для исходной гирлянды $U=30rI_0$

Для куска из 3 лампочек $U=3rI_1$

Для куска из 10 лампочек $U=10rI_2$

Для куска из 15 лампочек $U=15rI_3$

Отсюда находятся соотношения для токов в исходной гирлянде и в отрезках: $I_1=10I_0$, $I_2=3I_0$, $I_3=2I_0$.

 $I = I_1 + I_2 + I_3$

Сила тока в цепи увеличилась в 15 раз.

Нарисована электрическая схема - 2 балла Записано выражение для полного сопротивления - 4 балла Найдены количества лампочек в отрезках - 10 баллов Во сколько раз увеличилась сила тока в цепи - 4 балла

Задача 4 (20 баллов)

Электрическая цепь состоит из двух резисторов с сопротивлениями $R_1 = 40$ Ом и $R_2 = 60$ Ом, соединенных параллельно. Сила тока через первый резистор $I_1 = 0,60$ А. Определить мощность тепловых потерь в цепи. (Изобразить схему соединения резисторов)

Решение.

Мощность, выделяемая в цепи $P = I^2 {}_1 R_1 + I^2 {}_2 R_2$,

где I $_1$ - ток, текущий через резистор $R_1,\,I_2$ – ток, текущий через резистор $R_2.$

При параллельном соединении напряжения на всех ветвях одинаковы $U_1 = U_2$.

Согласно закону Ома для однородного участка цепи $I_1R_1 = I_2R_2$.

Ток $I_2 = I_1$ $R_1 / R_2 = 0,4$ A. $P_1 = 14.4$ Вт, $P_2 = 9,6$ Вт

мощность тепловых потерь в цепи $P = 24 \ Bt$.

Задача 5 (30 баллов)

От генератора с э.д.с. E=110~B требуется передать энергию на расстояние l=250~m. Потребляемая мощность P=1~kBт. Найти минимальное сечение S медных подводящих проводов, если потери мощности в сети не должны превышать 1%.

Решение

По условию задачи потери мощности в сети должны превышать 1%, следовательно КПД η = 99%.

Сопротивление проводов $R=\rho 2I/S$, R=U/I;

P=EI, отсюда I=P/E

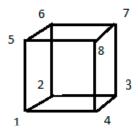
КПД η =U/E, откуда U= η E.

 $R = \eta E^2/P$;

 $\eta E^2/P\!\!=\rho 2l/S,$ откуда $S=\rho 2lP/$ $\eta E^2\!\!=\!\!78$ мм 2

Многопрофильная инженерная олимпиада «Звезда» «Электроэнергетика»

10-11 классы

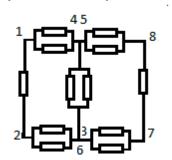

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания


Задача 1 (10 баллов)

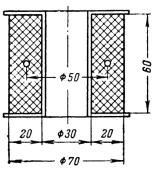
Из одинаковых проволочек спаяли куб. Определите, в каком случае сопротивление цепи больше, если источник напряжения подключить к крайним точками диагонали грани куба или к крайним точками диагонали куба.


Решение

Куб спаян из одинаковых проволочек, значит сопротивление каждой такой проволочки г. Сопротивление эквивалентной схемы при подключении напряжения к крайними точками диагонали куба, т.е. между точками 1 и 7.

Полное сопротивление $R_1=5r/6$. (10 баллов)

Сопротивление эквивалентной схемы при подключении напряжения к крайним точками диагонали грани куба, т.е. между точками 1 и 8.



Полное сопротивление R2=3r/4. (10 баллов)

Сопротивление больше если напряжение подключить к крайним точками диагонали грани куба.

Задача 2 (20 баллов)

Индуктивная катушка намотана из медной эмалированной проволоки диаметром 0,8 мм. Диаметр проволоки с изоляцией составляет 0,87 мм. Определить сопротивление индуктивной катушки. Удельное сопротивление меди принять равным 0,0178 Ом·мм²/м. Размеры катушки индуктивности показаны на рисунке.

Решение.

Один слой обмотки состоит из n=60/0,87=69 витков

Число слоев обмотки x=20/0,87=23

Число витков катушки N=69x23=1 587

Средняя длина витка $\pi d=157$ мм = 0,157 м; d=70-20=50 мм

Длина всей обмотки l= 0,157x1 587=249,2 м.

Сечение провода $S = \pi d^2/4 = 0.5 \text{ мм}^2$

Сопротивление катушки индуктивности r=p1/S=8,87 Ом.

Задача 3 (20 баллов)

Найдите мощность, выделяемую во внешней цепи, состоящей из двух одинаковых сопротивлений, если известно, что на сопротивлениях выделяется одна и та же мощность как при последовательном, так и при параллельном их соединении. Источником служит элемент с ЭДС E = 9,0 В и внутренним сопротивлением r = 1,0 Ом. Как и почему выгоднее соединять эти сопротивления?

Решение

Мощность тока, выделяемая на внешнем участке цепи $P = I^2R$ вн, где I -сила тока в цепи, Rвн -сопротивление внешнего участка цепи.

При последовательном соединении двух одинаковых сопротивлений

$$R_{\rm BH}=2R$$
,

При параллельном их соединении — $R_{\rm BH} = R/2$.

Сила тока в цепи

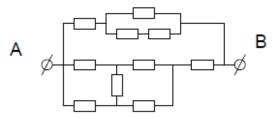
при последовательном соединении сопротивлений $I_{\text{посл}}\!=\!\!E/(2R\!+\!r)$

при параллельном соединении $I_{\text{пар}} = 2E/(r+2R)$.

$$P_{\text{посл}} = P_{\text{пар}}$$

$$\frac{E^2 2R}{(2R+r)^2} = \frac{E^2 4R}{2(R+2r)^2}$$

$$2R + r = R + 2r$$


$$R = r$$

$$P = \frac{2E^2}{9r} = 18 \text{ BT}$$

При этом тепловые потери будут разные. При параллельном соединении сопротивлений ток, текущий через источник (I=6~A) в два раза больше, чем при последовательном их соединении (I=3~A). Мощность тепловых потерь будет в четыре раза больше. Поэтому сопротивления выгоднее соединять последовательно.

Задача 4 (20 баллов)

10 сопротивлений соединили между собой так, как показано на рисунке.

Отдельное сопротивление перегорает, если ток через него превышает 12 А. Найти силу тока, при которой точки А и В будут изолированы друг от друга. Значение одного сопротивления принять равным R. (Решение необходимо пояснить эквивалентной схемой соединения резисторов, на которой показать все токи.)

Решение.

В нижней части схемы есть сопротивление, которое включено между точками с одинаковым потенциалом, поэтому ток через это сопротивление всегда равен 0 и его можно не учитывать.

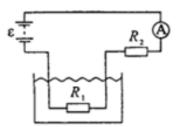
Таким образом, эквивалентная схема содержит две параллельные ветви с сопротивлением

R+2/3R=5/3 R и 4R/4+R=2R. Ток I_1 – ток протекающий в верхней части цепи. Ток I_2 – ток протекающий в нижней части цепи.

Точки А и В будут изолированы друг от друга при перегорании первого сопротивления в верхней части цепи.

Для этого ток через это сопротивление должен быть равен I_0 , то есть $I_1 = I_0$

Так как верхняя и нижняя часть соединены параллельно напряжение между ними одинаковое, получим: $5/3I_1=2I_2$


Следовательно $I_2=5/6 I_0$

 $I=I_1+I_2=11I_0/6$.

I=22 A.

Задача 5 (30 баллов)

Нагреватель электрического чайника сопротивлением R_{1} , подключен к источнику питания как показано на рисунке.

Э.д.с. батареи E=120~B, сопротивление $R_2=10~O$ м. Амперметр показывает ток I=2~A. Через какое время закипит объем $V=0.5~\pi$ воды? Начальная температура воды $t_0=4^\circ$ С. К.п.д. $\eta=76\%$ нагревателя. (Удельная плотность воды $1\cdot10^3$ кг/м³; удельная теплоемкость воды $4.2\cdot10^3~Дж/К\cdot$ кг)

Решение

Мощность нагревателя $P = UI = \frac{U^2}{I}$;

За время τ количество теплоты $Q = \eta P \tau$, которое пойдет на нагревание до температуры кипения T_{κ} . $Q = V \rho c (T_{\kappa} - T_0)$ из этого

$$\tau = \frac{V\rho c(T\kappa - T0)R}{\eta U^2};$$

Так как сопротивления включены последовательно, то ток в цепи $I=E/(R_1+R_2)$, отсюда сопротивление $R_1=E/I-R_2=50$ Ом.

Падение напряжения на R_1 , равно U_1 = IR_1 =100~B.

Многопрофильная инженерная олимпиада «Звезда» «Биотехнологии»

7-9 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1. В биотехнологической практике часто необходимо произвести подсчет количества микроорганизмов в лабораторном материале (например суспензии). Для этих целей можно использовать камеру Горяева-Тома (рис. 1).

Эта камера представляет собой толстое предметное стекло, разделенное бороздками. На центральную часть стекла нанесена сетка. Площадь квадрата составляет 1/25 мм² (большой квадрат) или 1/400 мм² (малый квадрат). Глубина камеры составляет 0,1 мм.

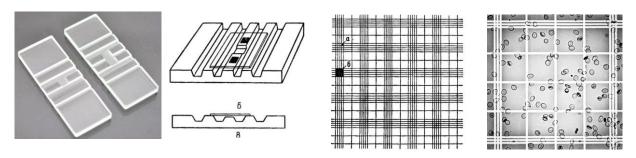


Рис. 1. Камера Горяева-Тома для подсчета количества микроорганизмов

Количество клеток в 1 мл исследуемой суспензии при подсчете в камере Горяева-Тома вычисляют по формуле:

$$x = \frac{a \times 10^3}{h \times S} \cdot n,\tag{1}$$

где x – число клеток в 1 мл суспензии;

a – среднее число клеток в квадрате сетки;

h – глубина камеры в мм;

S – площадь квадрата сетки в мм²;

 10^3 – коэффициент перевода см³ в мм³;

n – разведение исследуемой суспензии (n=25).

Задание. Используя представленные ниже данные (табл. 1 и 2), определите исходное число микроорганизмов в суспензии и установите температуру, при которой достигается эффект снижения количества микроорганизмов в 10 раз (15 баллов).

Таблица 1. Результаты подсчета клеток исходной суспензии микроорганизмов в камере Горяева-Тома

№ квадрата сетки	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Число клеток в	15	17	8	14	16	14	17	4	19	21	13	15	16	15	13
большом															
квадрате сетки №квадрата	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
сетки															
Число клеток в	11	12	14	12	13	15	16	16	16	10	10	15	15	17	16
большом															
квадрате сетки															

Таблица 2. Результаты подсчета клеток суспензии микроорганизмов в камере Горяева-Тома после термического воздействия

Температура, °С	30	40	50	60	70	80
Среднее число	10,3	3,8	2,6	1,3	1,1	0,8
клеток в						
большом						
квадрате сетки						

Решение.

Для установления исходного количества клеток микроорганизмов необходимо использовать формулу (1).

На первом этапе решения следует установить значение a — среднее число клеток в квадрате сетки. Для этого необходимо рассчитать среднее арифметическое значение числа клеток в больших квадратах сетки (по табл.1): (15+17+8+14+16+14+17+4+19+...+16)/30=14,17.

На следующем этапе мы можем рассчитать искомое количество клеток:

 $x = \frac{14,17 \times 10^3}{0,1 \times 0,04} \cdot 25 = 88562500$ (ответ может быть представлен $88,6 \times 10^6$ клеток).

Важно учесть, что за значение S мы принимаем 1/25 мм 2 или 0,04 мм 2 , поскольку данные представленные в таблице 1 свидетельствуют о том, что подсчёт клеток микроорганизмов вёлся с использованием больших квадратов сетки камеры Горяева-Тома.

Для решения второй части задачи — установление температуры, при которой достигается эффект снижения количества микроорганизмов в 10 раз решение может быть представлено 2 вариантами: коротким и длинным.

Короткое решение предполагает сопоставление значения 14,17 (среднее число клеток в квадрате сетки), найденного на предыдущем этапе со значениями, представленными в таблице 2: 1,3 (при температуре 60 °C) — это первое значение, которое меньше 14,17 более чем в 10 раз, следовательно эффект снижения количества микроорганизмов в 10 раз достигается при температуре 60 °C и выше.

Длинный вариант решения может включать последовательные расчеты количества клеток в 1 мл суспензии по формуле (1) и сопоставление полученных значений со значением 88562500. Однако, следует учесть, что в уравнении изменяется только значение a.

Короткий вариант решения является более предпочтительным.

Ответ: Количество клеток в 1 мл исследуемой суспензии составляет $88,6\times10^6$. Эффект снижения количества микроорганизмов в 10 раз достигается при температуре 60 °C и выше.

Задача 2. Известно, что витамин D преимущественно получают в результате биосинтеза эргостерола (предшественника витамина D) микроорганизмами. Наиболее активные продуценты эргостерола — *Saccharomyces, Rhodotoryla, Candida*. В промышленных масштабах эргостерол получают при культивировании дрожжей и мицелиальных грибов на средах с избытком сахаров при дефиците азота, высокой температуре и хорошей аэрации.

В среднем дрожжи способны синтезировать 6-7 % эргостерола (к общей биомассе дрожжей), некоторые виды мицелиальных грибов — до 10 %. При этом, важно оценивать экономическую целесообразность процесса биосинтеза, которая характеризуется коэффициентом эффективности биосинтеза (КЭБ):

$$K\Im E = \frac{DB}{DS},\tag{2}$$

где DB— прирост биомассы продуцентов, г; DS — убыль сахаров в питательной среде, г.

Задание. Используя представленные ниже данные (табл.3), определите среди предложенных микроорганизмов наиболее эффективный продуцент эргостерола (15 баллов).

Таблица 3. Результаты определения биомассы микроорганизмов и массы сахаров в питательной среде в процессе биосинтеза эргостерола

Продуцент	Биомасса пр	оодуцента, г	Масса сахаров в питательной среде, г		
	На начало	На конец	На начало	На конец	
	культивирования	культивирования	культивирования	культивирования	
Saccharomyces cerevisiae	1	4,3	6	4,1	
Saccharomyces uvarum	1	2,8	6	4,6	
Candida quilliermondii	1	3,1	6	4,3	

Решение.

Для установления наиболее эффективного продуцента эргостерола, среди предложенных в таблицу 3 необходимо произвести расчеты коэффициента эффективности биосинтеза (КЭБ) для каждого из них, используя формулу 2.

Для расчетов важно понять, что прирост биомассы — это разница между значениями биомассы продуцента на конец и начало процесса биосинтеза.

Под убылью сахаров понимают разницу значений массы сахаров в питательной среде на начало и на конец процесса биосинтеза.

Таким образом,

K \ni E (Saccharomyces cerevisiae)= (4,3-1)/(6-4,1)=1,74;

K \ni E (Saccharomyces uvarum)= (2,8-1)/(6-4,6)=1,29;

 $K \ni E$ (Candida quilliermondii) = (4,3-1)/(6-4,1)=1,24;

Выбираем наибольшее значение из полученных— 1,74.

Ответ: наиболее эффективным продуцентом эргостерола из предложенных являются дрожжи *Saccharomyces cerevisiae*, КЭБ=1,74.

Задача 3. В настоящее время для производства пищевых продуктов лечебно-профилактического назначения используют технологию обогащения биологически активными веществами (БАВ) в инкапсулированном (защищенном) виде (рис. 2). Для инкапсуляции, например, используют β-циклодекстрин (молярная масса: 1134,987 г/моль)

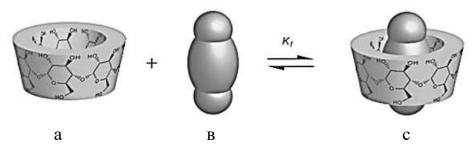


Рис.2. Схематичное изображение инкапсуляции БАВ в β -циклодекстрин: $a-\beta$ -циклодекстрин, $b-\beta$ AB, c-комплекс инкапсулированного БАВ

Задание. Предприятие «N» решило производить биологически активную добавку (БАД) — рутин ($C_{27}H_{30}O_{16}$), инкапсулированный в β -циклодекстрин. Рассчитайте какое количество БАВ и β -циклодекстрина в граммах необходимо использовать для получения $100\ \Gamma$ БАД, если для эффективной инкапсуляции необходимо обеспечить молярное соотношение 3:1 (БАВ: β -циклодекстрин) ($30\ баллов$).

Решение.

Решать задачу необходимо в несколько этапов.

На первом этапе необходимо определить молярную массу рутина по представленной для него формуле – $C_{27}H_{30}O_{16}$.

Расчет: 12×27+1×30+16×16=324+30+256=610 г/моль.

На втором этапе необходимо учесть условие, что эффективно процесс инкапсуляции протекает при соотношении рутин:β-циклодекстрин= 3:1.

Следовательно, для приготовления смеси при инкапсуляции соотношение веществ по массе должно быть: (610×3) :1134,987, т.е. 1830г:1134,987г.

На третьем этапе нам необходимо составить уравнение:

Массу рутина примем за x, тогда масса β-циклодекстрина в смеси составит 1134,987/1830=0,62x, т.е. получим уравнение:

$$x+0.62x=100$$
,

отсюда x = 100/1,62 = 61,73 г (масса рутина)

тогда масса β -циклодекстрина $0.62 \times 61.73 = 38.27$ (или 100-61.73 = 38.27).

Отвем: для получения 100 г БАД — рутина, инкапсулированного в βциклодекстрин, необходимо использовать смесь, состоящую из 61,73 г рутина и 38,27 г β-циклодекстрина.

Задача 4. Укажите основные признаки, присущие клеткам. Используйте знак «+», если признак присутствует и знак «—», если отсутствует (*10 баллов*)

Отличительный	Эукариоты	Прокариоты
признак		
Наличие ядра		
Гаметы		
Пищеварительные		
вакуоли		
Митоз и мейоз		
Мезосомы		
Рибосомы		
Комплекс Гольджи		

Ответ:

Отличительный	Эукариоты	Прокариоты
признак		
Наличие ядра	+	_
Гаметы	+	_
Пищеварительные	+	_
вакуоли		
Митоз и мейоз	+	_
Мезосомы		+
Рибосомы	+	+
Комплекс Гольджи	+	_

Задача 5. Предприятие «N» организует выпуск хлеба, обогащенного витамином B6.

Произведите расчет необходимого количества витамина В6 в рецептуре хлебобулочного изделия (на 100 кг муки).

При решении задачи необходимо учесть:

•рекомендуемая норма потребления витамина В6 составляет 25 мг/ сут на человека;

- •поступление витамина В6 в составе хлеба должно составлять 30 % от рекомендуемой нормы потребления;
 - •рекомендуемая норма потребления хлеба 175 г/ сут на человека;
- •потери витамина В6 в процессе технологии производства, при брожении теста и выпечке хлеба составят 40 % (*30 баллов*).

Решение.

Решать задачу необходимо в несколько этапов.

- 1. Рассчитаем, сколько витамина B6 должно поступать в организм человека в сутки с хлебом (по условию задачи 30 %): $25 \times 0.3 = 7.5$ мг/сут (или по пропорции $25 \times 30/100$).
- Т.е., с учетом указанной в задаче рекомендуемой нормы потребления 7,5 мг витамина В6 должно содержаться в 175г хлеба.
- 2. В задаче не указан выход хлеба, т.е. принимаем условие, что из 100 кг муки получится 100 кг хлеба (этот этап может не отражаться в решении).
- 3. Учитываем потери витамина В6 в процессе технологии производства (40% по условиям задачи).

Необходимо составить уравнение или пропорцию:

60% - 7,5мг

100%-Хмг, отсюда X=12,5мг.

Т.е., для коррекции потери витамина В6, необходимо внести не 7,5г, а 12,5 мг на 175 г муки.

4. Рассчитываем сколько витамина B6 необходимо внести на 100 кг (или 100000 г) муки:

 $175 \Gamma - 12,5 M\Gamma$

 $100000 \, \Gamma - X$, отсюда

 $X=12,5\times100000/175=7142,9$ мг (или 7,1 г).

Расчеты могут быть более компактными, очередность этапов расчета может быть изменена.

Отвем: для обеспечения поступления в организм человека витамина В6 в количестве 30 % от рекомендуемого уровня потребления с учетом нормы потребления хлеба в рецептуру нужно внести 7,1 г витамина В6 на 100 кг муки.

Многопрофильная инженерная олимпиада «Звезда» «Биотехнологии»

10-11 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1. В биотехнологической практике часто необходимо произвести подсчет количества микроорганизмов в лабораторном материале (например суспензии). Для этих целей можно использовать камеру Горяева-Тома (рис. 1).

Эта камера представляет собой толстое предметное стекло, разделенное бороздками. На центральную часть стекла нанесена сетка. Площадь квадрата составляет 1/25 мм² (большой квадрат) или 1/400 мм² (малый квадрат). Глубина камеры составляет 0,1 мм.

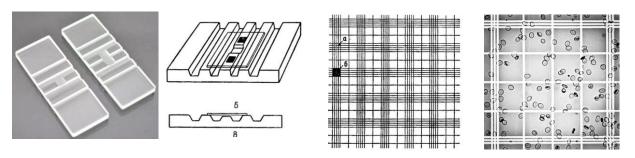


Рис. 1. Камера Горяева-Тома для подсчета количества микроорганизмов

Количество клеток в 1 мл исследуемой суспензии при подсчете в камере Горяева-Тома вычисляют по формуле:

$$\chi = \frac{a \times 10^3}{h \times S} \cdot n \tag{1}$$

где

x – число клеток в 1 мл суспензии;

a — среднее число клеток в квадрате сетки (в подсчетах не учитываются квадраты, в которых более 20 клеток);

h – глубина камеры в мм;

S – площадь квадрата сетки в мм²;

 10^3 – коэффициент перевода см³ в мм³;

n — разведение исследуемой суспензии (n=25).

Задание. Используя представленные ниже данные (табл.1 и 2), определите исходное число микроорганизмов в суспензии и установите температуры, при которых достигается эффект снижения количества микроорганизмов в 10 и более раз (15 баллов).

Таблица 1. Результаты подсчета клеток исходной суспензии микроорганизмов в камере Горяева-Тома

№ квадрата	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
сетки															
Число клеток в	15	17	8	14	16	14	24	4	19	21	13	15	16	15	13
большом															
квадрате сетки															
№квадрата	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
сетки															
Число клеток в	11	12	14	12	23	15	16	16	16	10	10	15	21	17	16
большом															
квадрате сетки															

Таблица 2. Результаты подсчета клеток суспензии микроорганизмов в камере Горяева-Тома после термического воздействия

Температура, °С	30	40	50	60	70	80
Среднее число	10,3	3,8	2,6	1,3	1,1	0,8
клеток в большом						
квадрате сетки						

Решение.

Для установления исходного количества клеток микроорганизмов необходимо использовать формулу (1).

На первом этапе решения следует установить значение a — среднее число клеток в квадрате сетки. Для этого необходимо рассчитать среднее арифметическое значение числа клеток в больших квадратах сетки (по табл.1). При этом учесть условие, что в подсчетах не учитываются квадраты, в которых более 20 клеток, т.е. исключить из расчетов значения в квадратах № 7, 10, 20, 28:

(15+17+8+14+16+14+...+16)/30=359/26=13.81.

На следующем этапе мы можем рассчитать искомое количество клеток:

 $x = \frac{13.81 \times 10^3}{0.1 \times 0.04} \cdot 25 = 86312500$ (ответ может быть представлен 86.3×10^6 клеток).

Важно учесть, что за значение S мы принимаем 1/25 мм² или 0,04 мм², поскольку данные представленные в таблице 1 свидетельствуют о том, что подсчёт клеток микроорганизмов вёлся с использованием больших квадратов сетки камеры Горяева-Тома.

Для решения второй части задачи — установление температуры, при которой достигается эффект снижения количества микроорганизмов в 10 раз решение может быть представлено 2 вариантами: коротким и длинным.

Короткое решение предполагает сопоставление значения 13,81 (среднее число клеток в квадрате сетки), найденного на предыдущем этапе со значениями, представленными в таблице 2, получим, что 1,3 (при температуре 60 °C) – это первое значение, которое меньше 13,81 более чем в 10 раз, следовательно

эффект снижения количества микроорганизмов в 10 раз достигается при температуре 60 °C и выше.

Длинный вариант решения может включать последовательные расчеты количества клеток в 1 мл суспензии по формуле (1) и сопоставление полученных значений со значением 86312500. Однако, следует учесть, что в уравнении изменяется только значение *a*.

Короткий вариант решения является более предпочтительным.

Ответ: Количество клеток в 1 мл исследуемой суспензии составляет $88,3\times10^6$. Эффект снижения количества микроорганизмов в 10 раз достигается при температуре $60\,^{\circ}\text{C}$ и выше.

Задача 2. Известно, что витамин D преимущественно получают в результате биосинтеза эргостерола (предшественника витамина D) микроорганизмами. Наиболее активные продуценты эргостерола — Saccharomyces, Rhodotoryla, Candida. В промышленных масштабах эргостерол получают при культивировании дрожжей и мицелиальных грибов на средах с избытком сахаров при дефиците азота, высокой температуре и хорошей аэрации.

В среднем дрожжи способны синтезировать 6-7 % эргостерола (к общей биомассе дрожжей), некоторые виды мицелиальных грибов — до 10 %. При этом, важно оценивать экономическую целесообразность процесса биосинтеза, которая характеризуется коэффициентом эффективности биосинтеза (КЭБ):

$$K\Im S = \frac{DB}{DS} \tag{2}$$

где

DB– прирост сухой биомассы продуцентов, г;

DS — убыль сахаров в питательной среде, г.

Задание. Используя представленные ниже данные (табл. 3), определите среди предложенных микроорганизмов наиболее эффективный продуцент эргостерола. Рассчитайте выход эргостерола для каждого из продуцентов на конец культивирования при условии накопления эргостерола в количестве 6% от сухой биомассы дрожжей. (15 баллов).

Таблица 3. Результаты определения биомассы микроорганизмов и массы сахаров в питательной среде в процессе биосинтеза эргостерола

Продуцент	Масса про	дуцента, г	Влажность биомассы микроорганизмов,	Масса сахаров сред	
	На начало	На конец	%	На начало	На конец
	культивирования	культивирования		культиви-	культиви-
				рования	рования
Saccharomyces cerevisiae	1	4,3	65	6	4,1
Saccharomyces uvarum	1	2,8	72	6	4,6
Candida quilli ermondii	1	3,1	70	6	4,3

Решение.

Для установления наиболее эффективного продуцента эргостерола, среди предложенных в таблицу 3 необходимо произвести расчеты коэффициента эффективности биосинтеза (КЭБ) для каждого из них, используя формулу 2.

Для расчетов важно понять, что прирост биомассы — это разница между значениями биомассы продуцента на конец и начало процесса биосинтеза.

Под убылью сахаров понимают разницу значений массы сахаров в питательной среде на начало и на конец процесса биосинтеза.

Таким образом,

KЭБ (Saccharomyces cerevisiae)= (4,3-1)/(6-4,1)=1,74;

K \ni E (Saccharomyces uvarum)= (2,8-1)/(6-4,6)=1,29;

KЭБ (Candida quilliermondii)= (4,3-1)/(6-4,1)=1,24;

Выбираем наибольшее значение из полученных – 1,74.

Для решения второй части задачи необходимо учесть условие, что эргостерола накапливается в количестве 6% от сухой биомассы дрожжей.

Учитывая значения влажности биомассы дрожжей, представленные в табл. 3 произведем расчёт массы синтезированного эргостерола для каждого из продуцентов

M1 (Saccharomyces cerevisiae):

- 1.1 Масса сухой биомассы дрожжей составит $4,3 \times (100-65)/100 = 1,505$ г
- 1.2. Масса синтезированного эргостерола составит $M1=1,505\times6/100=0,09$ г Решение может быть коротким: $M1=4,3\times0,35\times0,06=0,09$ г

Аналогично

M2 (Saccharomyces uvarum) = $2.8 \times 0.28 \times 0.06 = 0.05 \Gamma$, M3 (Candida quilliermondii) = $3.1 \times 0.3 \times 0.06 = 0.06 \Gamma$

Ответ: наиболее эффективным продуцентом эргостерола из предложенных являются дрожжи *Saccharomyces cerevisiae*, КЭБ=1,74.

Выход эргостерола для каждого из продуцентов на конец культивирования составит:

Saccharomyces cerevisiae-0,09 г Saccharomyces uvarum – 0,05 г Candida quilliermondii –0,06 г Задача 3. В настоящее время для производства пищевых продуктов лечебно-профилактического назначения используют технологию обогащения биологически активными веществами (БАВ) в инкапсулированном (защищенном) виде (рис. 2). Для инкапсуляции, например, используют β-циклодекстрин (молярная масса: 1134,987 г/моль)

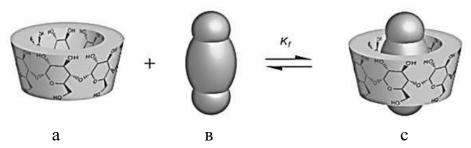


Рис.2. Схематичное изображение инкапсуляции БАВ в β -циклодекстрин: $a-\beta$ -циклодекстрин, $B-\beta$ -диклодекстрин, $B-\beta$ -диклодекстрин.

Задание. Предприятие «N» решило производить биологически активную добавку (БАД) — рутин ($C_{27}H_{30}O_{16}$), инкапсулированный в β -циклодекстрин. Рассчитайте какое количество БАВ и β -циклодекстрина в граммах необходимо использовать для получения 100 г БАД, если для эффективной инкапсуляции необходимо обеспечить молярное соотношение 3:1 (БАВ: β -циклодекстрин). При этом, инкапсулируется только 75 % БАВ, внесенного в исходную смесь (30 баллов).

Решение.

Решать задачу необходимо в несколько этапов.

На первом этапе необходимо определить молярную массу рутина по представленной для него формуле – $C_{27}H_{30}O_{16}$.

Расчет: $12 \times 27 + 1 \times 30 + 16 \times 16 = 324 + 30 + 256 = 610$ г/моль.

На втором этапе необходимо учесть условие, что эффективно процесс инкапсуляции протекает при соотношении рутин:β-циклодекстрин= 3:1.

Следовательно, для приготовления смеси при инкапсуляции соотношение веществ по массе должно быть: (610×3) :1134,987, т.е. 1830г:1134,987г.

Необходимо учесть условие, что только 75 % БАВ, внесенного в исходную смесь инкапсулируется (остальные 25% удаляются из смеси при промывании), Т.е. при соотношении 1830г:1134,987г готовой смеси получится: $1830 \times 0.75 + 1134,987 = 2507,487$ г

На третьем этапе нам необходимо составить уравнение:

Массу рутина β-циклодекстрина примем за х, тогда масса рутина в смеси составит 1830/1134,987×0,75=1,21х, т.е. получим уравнение:

$$x+1,21x=100,$$

отсюда x=100/1,62=45,25 г (масса β -циклодекстрина) тогда масса рутина $1,21\times45,25=54,75$ (или 100-45,25=54,75).

Отвем: для получения 100 г БАД — рутина, инкапсулированного в βциклодекстрин, необходимо использовать смесь, состоящую из 54,75 г рутина и 45,25 г β-циклодекстрина.

Задача 4. Установите последовательность процессов биосинтеза белка в клетке (*10 баллов*):

- А Присоединение аминокислоты к т-РНК.
- Б Выход и-РНК из рибосомы
- В Синтез и-РНК на ДНК.
- Г Соединение и-РНК с рибосомой.
- Д Образование пептидной связи между аминокислотами.
- Е Перемещение и-РНК из ядра к рибосоме.

Ответ: В-Е-Г-А-Д-Б

Задача 5. Предприятие «N» организует выпуск хлеба, обогащенного витамином B6.

Произведите расчет необходимого количества витамина В6 в рецептуре хлебобулочного изделия (на 100 кг муки).

При решении задачи необходимо учесть:

- •рекомендуемая норма потребления витамина B6 составляет 25 мг/ сут на человека;
- •поступление витамина В6 в составе хлеба должно составлять 30 % от рекомендуемой нормы потребления;
 - •рекомендуемая норма потребления хлеба 175 г/ сут на человека;
- •потери витамина В6 в процессе технологии производства, при брожении теста и выпечке хлеба составят 40 %;
- выход хлеба составляет 140 % (т.е. из 100 г муки получаем 140 г готового продукта) (30 баллов).

Решение.

Решать задачу необходимо в несколько этапов.

- 1. Рассчитаем, сколько витамина B6 должно поступать в организм человека в сутки с хлебом (по условию задачи 30 %): $25 \times 0.3 = 7.5$ мг/сут (или по пропорции $25 \times 30/100$).
- Т.е., с учетом указанной в задаче рекомендуемой нормы потребления 7,5 мг витамина В6 должно содержаться в 175г хлеба.
- 2. Учитываем потери витамина В6 в процессе технологии производства (40% по условиям задачи).

Необходимо составить уравнение или пропорцию:

60% - 7,5мг

100%-Х мг, отсюда Х=12,5мг.

Т.е., для коррекции потери витамина В6, необходимо внести не 7,5г, а 12,5 мг на 175 г муки.

3. В задаче указан выход хлеба 140 %, т.е. принимаем условие, что из 100 г муки получится 140 г хлеба, следовательно необходимо составить уравнение или пропорцию:

 $100 \, \Gamma - 12,5 \, \text{м}\Gamma$

 $170 \ \Gamma - X \ M\Gamma$, отсюда

 $X=12,5\times140/175=10$ мг на 100 г муки.

4. Рассчитываем какое количество витамина B6 необходимо внести на 100 кг (или 100000 г) муки:

 $10 \times 1000 = 10000$ мг или 10 г витамина B6

Расчеты могут быть более компактными, очередность этапов расчета может быть изменена.

Отвем: для обеспечения поступления в организм человека витамина В6 в количестве 30 % от рекомендуемого уровня потребления с учетом нормы потребления хлеба в рецептуру нужно внести 10 г витамина В6 на 100 кг муки.

Критерии оценивания

Решение каждой из представленных задач оценивается по системе 0-5 баллов с учетом критериев представленных в таблице:

Количество баллов за	Пояснение			
решение задачи				
5 баллов	Задача решена полностью правильно. Решение			
	задачи подробное и содержит необходимые			
	пояснения.			
4 балла	Задача решена правильно, но в решение задачи			
	имеются неточности или решение не содержит			
	необходимые пояснения.			
3 балла	Задача решена частично или с ошибками.			
2 балла	Задача решена более, чем на 1/3, направление			
	решения верное, но ответ не получен			
1 балл	Задача решена менее, чем на 1/3, ответ не получен			
0 баллов	Решение отсутствует			

Максимальное количество баллов за пять решенных задач составляет **100 баллов**.

Возможное количество баллов для каждой задачи устанавливается с учетом коэффициента сложности:

Номер	Значение коэффициента	Количество баллов за
задачи	сложности	задачу
1	3	0-15
2	3	0-15
3	6	0-30
4	2	0-10
5	6	0-30

Многопрофильная инженерная олимпиада «Звезда» «Информационная безопасность»

7-9 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1. Посчитать значение вектора уязвимости CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N согласно стандарту CVSS версии 3.1. ($12\ баллов$)

Решение. ISS = 1 - [(1 - Confidentiality) x (1 - Integrity) x (1 - Availability)] = 1 - [(1 - 0.22) x (1 - 0) x (1 - 0.22)] = 0.22

Impact = $6.42 \times ISS = 6.42 \times 0.22 = 1.4124$

Exploitability = 8.22 x AttackVector x AttackComplexity x PrivilegesRequired x UserInteraction = 8.22 x 0.85 x 0.77 x 0.85 x 0.85

BaseScore = Roundup (Minimum [(Impact + Exploitability), 10]) = Roundup (Minimum [(1.4124 + 3.887042775), 10]) = Roundup (Minimum [5.299442775, 10]) = 5.3

№ критерия	Количество баллов	Описание критерия
1	12	Приведено правильное решение, получен верный ответ.
		Допускается отклонение от ответа на 0.2
2	8	Приведено правильное решение, получен неверный ответ
3	2	Решение недостаточное или не приведено, ответ верный

Задача 2. Опишите значения метрик вектора уязвимости CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:L/A:N. (9 баллов)

Решение. AV:N – уязвимость, доступная для удаленного использования;

АС:L – никаких специальных условий или передовых знаний для совершения атаки не требуется;

PR:N – для совершения атаки не требуется авторизация и привилегии;

UI:R – для успешного использования этой уязвимости от пользователя требуется предпринять некоторые действия (например, переход по ссылке, установка приложения, открытие файла и т.д.);

S:U – эксплуатация уязвимости не позволяет нарушить конфиденциальность, целостность и доступность какого-либо другого компонента системы, кроме уязвимого;

С:Н – полная потеря конфиденциальности, в результате чего все ресурсы в затронутом компоненте раскрываются злоумышленнику;

I:L – модификация данных возможна, но злоумышленник не может контролировать последствия модификации, либо количество изменений ограничено. Изменение данных не оказывает прямого серьезного влияния на затронутый компонент;

А:N – нет никакого влияния на доступность затронутого компонента.

№ критерия	Количество баллов	Описание критерия
1	9	Все метрики описаны верно. Возможен вариант ответа с описанием
		атаки без описания каждой конкретной метрики
2	5	В 1 – 2 метриках допущены ошибки, либо описание отсутствует
3	1	Решение частично верное, но недостаточное. Либо ошибки
		допущены более, чем в двух метриках.

Задача 3. Посчитать оценку окружения уязвимости с учетом следующих значений метрик окружения CVSS:3.1/MAV:A/MAC:H/MPR:L/MUI:N/MS:C/MC:H/MI:H/MA:L/A:H/E:F/RL:O/RC:C. (13 баллов)

Решение. MISS = Minimum (1 – [(1 – ConfidentialityRequirement x ModifiedConfidentiality) x (1 – IntegrityRequirement x ModifiedIntegrity) x (1 – AvailabilityRequirement x ModifiedAvailability)], 0.915) = Minimum (1 – [(1 – 1 x 0.56) x (1 – 1 x 0.56) x (1 – 1 x 0.22)], 0.915) = 0.848992 ModifiedImpact = 7.52 x (MISS – 0.029) – 3.25 x (MISS x 0.9731 – 0.02) 13 = 7.52 x (0.848992– 0.029) – 3.25 x (0.848992x 0.9731 – 0.02) 13 ≈ 6.16633984 – 0.19738691 = 5.96895293 ModifiedExploitability = 8.22 x ModifiedAttackVector x ModifiedAttackComplexity x ModifiedPrivilegesRequired x ModifiedUserInteraction = 8.22 x 0.62 x 0.44 x 0.68 x 0.85 = 1.296116448 EnvironmentalScope = Roundup (Roundup [Minimum (1.08 x [ModifiedImpact + ModifiedExploitability], 10)] x

EnvironmentalScope = Roundup (Roundup [Minimum (1.08 x [ModifiedImpact + ModifiedExploitability], 10)] ExploitCodeMaturity x RemediationLevel x ReportConfidence) = Roundup (Roundup [Minimum (1.08 x [5.96895293 + 1.296116448], 10)] x 0.97 x 0.95 x 1) = Roundup (7.9 x 0.97 x 0.95 x 1) = 7.3

№ критерия	Количество баллов	Описание критерия
1	13	Приведено правильное решение, получен верный ответ.
		Допускается отклонение от ответа на 0.2
2	8	Приведено правильное решение, получен неверный ответ
3	2	Решение недостаточное или не приведено, ответ верный

Задача 4. По описанию атаки составить базовый вектор уязвимости CVSS версии 3.1 и посчитать его значение. Microsoft Internet Explorer с 9 по 11 версию некорректно обрабатывает объекты в памяти, что позволяет атакующему выполнить произвольный код на системе при переходе пользователя по ссылке, содержащей вредоносный код. Злоумышленник может выполнить данную атаку удаленно. (15 баллов)

Pemehue. CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

 $ISS = 1 - [(1 - Confidentiality) \ x \ (1 - Integrity) \ x \ (1 - Availability)] = 1 - [(1 - 0.56) \ x \ (1 - 0.56) \ x \ (1 - 0.56)] = 0.914816$

Impact = $6.42 \times ISS = 6.42 \times 0.914816 = 5.87311872$

Exploitability = 8.22 x AttackVector x AttackComplexity x PrivilegesRequired x UserInteraction = 8.22 x 0.85 x 0.77 x 0.85 x 0.62 = 2.83525473

BaseScore = Roundup (Minimum [(Impact + Exploitability), 10]) = Roundup (Minimum [(5.87311872 + 2.83525473), 10]) = Roundup (Minimum [8.70837345, 10]) = 8.8

№ критерия	Количество баллов	Описание критерия
1	15	Учеником составлен правильный вектор, приведено правильное
		решение, получен верный ответ. Допускается отклонение от ответа
		на 0.2
2	10	Составлен правильный вектор, приведено правильное решение,
		получен неверный ответ.
3	8	Вектор составлен с ошибкой в 1 метрике, приведено правильное
		решение, получен верный ответ (для составленного учеником
		вектора).
4	4	Вектор составлен с ошибкой более чем в 1 метрике, приведено
		правильное решение, получен верный ответ (для составленного
		учеником вектора).
5	2	Решение недостаточное или не приведено, ответ верный

Задача 5. Определить какая из уязвимостей критичнее. Проверить правильность с помощью расчета значения вектора CVSS.

А) Алгоритм аутентификации в кардиостимуляторах Abbott Laboratories, изготовленных до 28 августа 2017 г., который включает ключ аутентификации и отметку времени, может быть

скомпрометирован или обойден, что может позволить злоумышленнику, находящемуся поблизости, передать несанкционированные команды кардиостимулятору через радиочастотную связь.

Б) Эта уязвимость позволяет удаленным злоумышленникам выполнить произвольный код на уязвимых установках Google Chrome. Для использования этой уязвимости требуется взаимодействие с пользователем, поскольку жертва должна посетить вредоносную страницу или открыть вредоносный файл. Конкретный недостаток существует в обработке изображений JPEG 2000. Специально созданное изображение JPEG 2000, встроенное в PDF-файл, может заставить Google Chrome записывать в память за пределами выделенного объекта. Злоумышленник может использовать эту уязвимость для выполнения произвольного кода в контексте текущего процесса.

Злоумышленник создает PDF-файл, содержащий вредоносное изображение JPEG 2000. Это делается доступным для жертв, например, через веб-страницу. Жертва открывает PDF-документ в браузере Google Chrome, и браузер отображает PDF-файл с помощью встроенного средства просмотра PDF ито включает эксплойт и запускает исполняемый код, который злоумышленник поместил в образ, захватывая браузер. (20 баллов)

Pemenue. A) CVSS:3.1/AV:A/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

ISS = $1 - [(1 - \text{Confidentiality}) \times (1 - \text{Integrity}) \times (1 - \text{Availability})] = 1 - [(1 - 0.56) \times (1 - 0.56) \times (1 - 0.56)] = 0.914816$

Impact = $6.42 \times ISS = 6.42 \times 0.914816 = 5.87311872$

Exploitability = 8.22 x AttackVector x AttackComplexity x PrivilegesRequired x UserInteraction = 8.22 x 0.62 x 0.44 x 0.85 x 0.85 = 1.62014556

BaseScore = Roundup (Minimum [(Impact + Exploitability), 10]) = Roundup (Minimum [(5.87311872 + 1.62014556), 10]) = Roundup (Minimum [7.49326428, 10]) = 7.5

Б) CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

 $ISS = 1 - [(1 - Confidentiality) \times (1 - Integrity) \times (1 - Availability)] = 1 - [(1 - 0.56) \times (1 - 0.56) \times (1 - 0.56)] = 0.914816$

Impact = $6.42 \times ISS = 6.42 \times 0.914816 = 5.87311872$

Exploitability = 8.22 x AttackVector x AttackComplexity x PrivilegesRequired x UserInteraction = 8.22 x 0.85 x 0.77 x 0.85 x 0.62 = 2.83525473

 $BaseScore = Roundup \ (Minimum \ [(Impact + Exploitability), 10]) = Roundup \ (Minimum \ [(5.87311872 + 3.887042775), 10]) = Roundup \ (Minimum \ [8.70837345, 10]) = 8.8$

№ критерия	Количество баллов	Описание критерия
1	20	Учеником представлено его видение приоритетной уязвимости.
		Составлены правильные вектора, приведено правильное решение,
		получены верные ответы при расчетах. Допускается отклонение от
		ответа на 0.2
2	17	Учеником не описаны основания для определения какой-либо из
		уязвимостей наиболее приоритетной. Составлены правильные
		вектора, приведено правильное решение, получены верные ответы
		при расчетах. Допускается отклонение от ответа на 0.2
3	15	Учеником представлено его видение приоритетной уязвимости.
		Составлены правильные вектора, приведено правильное решение,
		получен неверный ответ.
4	12	Учеником не описаны основания для определения какой-либо из
		уязвимостей наиболее приоритетной. Составлены правильные
		вектора, приведено правильное решение, получен неверный ответ.
5	10	Учеником представлено его видение приоритетной уязвимости. При
		составлении векторов допущена ошибка в 1 метрике (возможно по 1
		в каждом), приведено правильное решение, получен верный ответ
		(для составленного учеником вектора).
6	7	Учеником не описаны основания для определения какой-либо из
		уязвимостей наиболее приоритетной. При составлении векторов
		допущена ошибка в 1 метрике (возможно по 1 в каждом), приведено
		правильное решение, получен верный ответ (для составленного
		учеником вектора).

7	5	Учеником представлено его видение приоритетной уязвимости. Вектор составлен с ошибкой более чем в 1 метрике, приведено правильное решение, получен верный ответ (для составленного учеником вектора).
8	3	Учеником не описаны основания для определения какой-либо из уязвимостей наиболее приоритетной. Вектор составлен с ошибкой более чем в 1 метрике, приведено правильное решение, получен верный ответ (для составленного учеником вектора).
9	2	Учеником представлено его видение приоритетной уязвимости. Решение недостаточное или не приведено, ответ верный

Проектная задача. Итоговый показатель критичности не всегда определяется метриками CVSS. Также данный метод плохо подходит для производственных объектов, так как не учитывает физические составляющие системы. Предложите свою идею оценки рисков и методику ее расчета. Для корректной оценки задания необходимо привести примеры расчета. (31 балл)

№ критерия	Количество баллов	Описание критерия
1	31	Учеником описаны критерии оценки риска (5 и более), обоснована
		методика оценки, приведены расчетные формулы. Примеры
		демонстрируют логичность приведенной методики.
2	21	Учеником описаны критерии оценки риска (менее 5), обоснована
		методика оценки, приведены расчетные формулы. Примеры
		демонстрируют логичность приведенной методики.
3	15	Учеником описаны критерии оценки риска, обоснована методика
		оценки, приведены расчетные формулы. Примеры не позволяют
		оценить логичность приведенной методики.
4	10	Учеником описаны критерии оценки риска, обоснована методика
		оценки, приведены расчетные формулы. Примеры не приведены.
5	3	Описаны критерии оценки риска, имеются наброски методики и
		формул.

Многопрофильная инженерная олимпиада «Звезда» «Информационная безопасность»

10-11 классы

Заключительный этап

2020-2021

Задания, ответы и критерии оценивания

Задача 1.

- A) С помощью любого ключа из кольца Z_{33} самостоятельно зашифровать слово «калькулятор» используя шифр Цезаря. (3 балла)
- Б) Используя русский алфавит необходимо методом подбора ключа в шифре Цезаря расшифровать сообщение Y = ФТРЧФЛТУЯФЬХГЯЮХСЛТРЩГ. (7 баллов)

Решение.

Х= ДВАЖДЫВГОДЛЕТОНЕБЫВАИТ

 $Y = \Phi TP \Psi \Phi Л T У Я \Phi Ь X Г Я Ю X С Л TP Ш Г (21,19,17,24,21,12,19,20,32,21,29,22,3,32,31,22,18,12,19,17,26,3)$ $\frac{k=1}{}$ > (20,18,16,23,20,11,18,19,31,20,28,21,2,31,30,21,17,11,18,16,25,2)=УСПЦУКСТЮУЫФВЮЭФРКСПШВ $\frac{k=2}{}>(19,17,15,22,19,10,17,18,30,19,27,20,1,30,29,20,16,10,17,15,24,1) = \text{ТРОХТЙРСЭТЪУБЭЬУПЙРОЧБ}$ $\frac{k=3}{}$ > (18,16,14,21,18,9,16,17,29,18,26,19,0,29,28,19,15,9,16,14,23,0)=СПНФСИПРЬСЩТАЬЫТОИПНЦА $\frac{k=4}{}>(17,15,13,20,17,8,15,16,28,17,25,18,32,28,27,18,14,8,15,13,22,32) = \text{РОМУРЗОПЫРШСЯЫЪСНЗОМХЯ}$ $\frac{k=5}{}>(16,14,12,19,16,7,14,15,27,16,24,17,31,27,26,17,13,7,14,12,21,31)=\Pi H Л T \Pi Ж H O Ъ \Pi Ч P IO Ъ Щ P M Ж H Л Ф IO$ $\frac{k=6}{}$ > (15,13,11,18,15,6,13,14,26,15,23,16,30,26,25,16,12,6,13,11,20,30)=ОМКСОЁМНЩОЦПЭЩШПЛЁМКУЭ $\frac{k=7}{}$ > (14,12,10,17,14,5,12,13,25,14,22,15,29,25,24,15,11,5,12,10,19,29)=НЛЙРНЕЛМШНХОЬШЧОКЕЛЙТЬ $\frac{k=8}{}>(13,11,9,16,13,4,11,12,24,13,21,14,28,24,23,14,10,4,11,9,18,28)=MКИПМДКЛЧМФНЫЧЦНЙДКИСЫ$ $\frac{k=9}{}>(12,10,8,15,12,3,10,11,23,12,20,13,27,23,22,13,9,3,10,8,17,27)=\text{ЛЙЗОЛГЙКЦЛУМЪЦХМИГЙЗРЪ}$ $\frac{k=10}{}>(11,9,7,14,11,2,9,10,22,11,19,12,26,22,21,12,8,2,9,7,16,26) = \mathsf{K}\mathsf{И}\mathsf{Ж}\mathsf{H}\mathsf{K}\mathsf{B}\mathsf{U}\mathsf{Й}\mathsf{X}\mathsf{K}\mathsf{T}\mathsf{Л}\mathsf{U}\mathsf{U}\mathsf{X}\Phi\mathsf{Л}\mathsf{3}\mathsf{B}\mathsf{U}\mathsf{Ж}\mathsf{\Pi}\mathsf{U}\mathsf{U}$ $\frac{k=11}{}$ > (10,8,6,13,10,1,8,9,21,10,18,11,25,21,20,11,7,1,8,6,15,25)=ЙЗЁМЙБЗИФЙСКШФУКЖБЗЁОШ $\frac{k=12}{}$ > (9,7,5,12,9,0,7,8,20,9,17,10,24,20,19,10,6,0,7,5,14,24)=ИЖЕЛИАЖЗУИРЙЧУТЙЁАЖЕНЧ $\frac{k=13}{}$ > (8,6,4,11,8,32,6,7,19,8,16,9,23,19,18,9,5,32,6,4,13,23)=ЗЁДКЗЯЁЖТЗПИЦТСИЕЯЁДМЦ $\frac{k=14}{}$ > (7.5,3,10,7,31,5,6,18,7,15,8,22,18,17,8,4,31,5,3,12,22)=ЖЕГЙЖЮЕЁСЖОЗХСРЗДЮЕГЛХ $\frac{k=15}{}$ > (6,4,2,9,6,30,4,5,17,6,14,7,21,17,16,7,3,30,4,2,11,21)=ЁДВИЁЭДЕРЁНЖФРПЖГЭДВКФ $\frac{k=16}{}$ > (5,3,1,8,5,29,3,4,16,5,13,6,20,16,15,6,2,29,3,1,10,20)=ЕГБЗЕЬГДПЕМЁУПОЁВЬГЬЙУ $\frac{k=17}{}$ > (4,2,0,7,4,28,2,3,15,4,12,5,19,15,14,5,1,28,2,0,9,19)=ДВАЖДЫВГОДЛЕТОНЕБЫВАИТ

Решение приведено только для пункта Б. Решение для пункта А приводится учеником. Проверяющим оценивается логичность решения. Возможна проверка с помощью онлайн калькулятора. Например, https://planetcalc.ru/1434/.

№ критерия	Количество баллов	Описание критерия
1	3	Правильно выполнено самостоятельное шифрование слова
		«калькулятор»
2	1	При расшифровке получена правильная фраза (читается общий
		смысл)
3	3	Фраза шифровалась с ошибкой. Если при расшифровке ученик
		получил слово «бываит», то он получает данные баллы

	4 критерий – оценка написанного учеником решения (выбирается только 1 пункт)		
	4 (a)	3	Приведено правильное достаточное решение
	4 (б)	1	Приведено частично правильное (либо неполное) решение
ſ	4 (B)	0	Решение не приведено

Итоговая оценка складывается из суммы баллов за соответствующие решению ученика критерии.

Задача 2. Используя латинский алфавит с индексацией букв элементами кольца Z26

- A) Зашифровать с помощью шифра Виженера сообщение X = PANEM ET CIRCENSES. Ключ необходимо придумать самостоятельно. (4 балла)
- Б) Расшифровать с помощью шифра Виженера сообщение Y = DCKJPZNRRNTVLNWMPVIHZCGPPBMJCQJROAMMA, ключ K = LIFE. (8 баллов)

Решение.

Y = DCKJPZNRRNTVLNWMPVIHZCGPPBMJCQJROAMMA

(3,2,10,9,15,25,13,17,17,13,19,21,11,13,22,12,15,21,8,7,25,2,6,15,15,1,12,9,2,16,9,17,14,0,12,12,0)

K = LIFE (11,8,5,4)

SUFFERINGFORAFRIENDDOUBLETHFRIENDSHIP

Решение приведено только для пункта Б. Решение для пункта А приводится учеником. Проверяющим оценивается логичность решения. Возможна проверка с помощью онлайн калькулятора. Например, https://planetcalc.ru/2468/.

№ критерия	Количество баллов	Описание критерия
1	4	Правильно выполнено самостоятельное шифрование фразы «PANEM
		ET CIRCENSES»
2	1	При расшифровке получена правильная фраза
3	3	При расшифровке получена правильная числовая комбинация
4	4	Приведено правильное достаточное решение

Итоговая оценка складывается из суммы баллов за соответствующие решению ученика критерии.

Задача 3. Используя русский алфавит с индексацией букв элементами кольца Z_{33} расшифровать с помощью шифра Хилла сообщение Y = ЫКБЧТЖ.

Ключом в шифре Хилла является пара матриц: $A = \begin{pmatrix} 3 & 7 \\ 1 & 9 \end{pmatrix}$ $B = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$. (15 баллов)

Решение.

$$A^{-1} = \frac{1}{\det A} \tilde{A}^{t}$$

$$\det A = 27 - 7 = 20$$

$$\frac{1}{\det A} = (20)^{-1} = 5$$

$$\tilde{A}^{t} = \begin{pmatrix} 9 & -1 \\ -7 & 3 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 9 & -7 \\ -1 & 3 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 12 & 31 \\ 28 & 15 \end{pmatrix}$$

Y= ЫКБЧТЖ (28,11,1,24,19,7)

 $(28,11) \rightarrow (4,15)$

$$\begin{pmatrix} 12 & 31 \\ 28 & 15 \end{pmatrix} \begin{pmatrix} 28 \\ 11 \end{pmatrix} - \begin{pmatrix} 10 \\ 4 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 12 & -2 \\ -5 & 15 \end{pmatrix} \begin{pmatrix} 18 \\ 7 \end{pmatrix} = \begin{pmatrix} 12 * 18 - 2 * 7 \\ -18 * 5 + 15 * 7 \end{pmatrix} = \begin{pmatrix} 4 \\ 15 \end{pmatrix}$$

$$(1,24) \rightarrow (17,15)$$

$$\binom{12}{28} \quad \frac{31}{15} \left(\binom{1}{24} - \binom{10}{4} \right) = \binom{12}{-5} \quad \frac{-2}{15} \binom{-9}{20} = \binom{-12 * 9 - 2 * 20}{5 * 9 + 15 * 20} = \binom{17}{15}$$

X (4,15,17,15,3,0) = ДОРОГА

№ критерия	Количество баллов	Описание критерия	
1	4	Правильно найдена обратная матрица	
2	1	При расшифровке получено правильное слово	
3	4	При расшифровке получена правильная числовая комбинация	
4 критерий –	4 критерий – оценка написанного учеником решения (выбирается только 1 пункт)		
4 (a)	6	Приведено правильное достаточное решение	
4 (б)	2	Приведено частично правильное (либо неполное) решение	
4 (B)	0	Решение не приведено	

Итоговая оценка складывается из суммы баллов за соответствующие решению ученика критерии.

Задача 4. Сообщение было последовательно зашифровано с помощью шифра Цезаря и шифра Виженера. Ключом в шифре Виженера является K=ЛУНА. Расшифровать сообщение

Y = ЫПЯНДБЗТЖЭНЬРЙН. Кольцо Z₃₃. (12 баллов)

Решение.

Y = ЫПЯНДБЗТЖЭНЬРЙН (28,16,32,14,4,1,8,19,7,30,14,29,17,10,14)

K = ЛУНА (12,20,14,0)

Y' = (16,29,18,14,25,14,27,19,28,10,0,29,5,23,0)

 $\frac{k=1}{}$ > (15,28,17,13,24,13,26,18,27,9,32,28,4,22,32)=ОЫРМЧМЩСЪИЯЫДХЯ

 $\frac{k=2}{2}$ > (14,27,16,12,23,12,25,17,26,8,31,27,3,21,31)=НЪПЛЦЛШРЩЗЮЪГФЮ

 $\frac{k=3}{}$ > (13,26,15,11,22,11,24,16,25,7,30,26,2,20,30)=МЩОКХКЧПШЖЭЩВУЭ

 $\frac{k=5}{}$ > (11,24,13,9,20,9,22,14,23,5,28,24,0,18,28)=КЧМИУИХНЦЕЫЧАСЫ

 $\frac{k=6}{}$ > (10,23,12,8,19,8,21,13,22,4,27,23,32,17,27)=ЙЦЛЗТЗФМХДЪЦЯРЪ

 $\frac{k=7}{}$ > (9,22,11,7,18,7,20,12,21,3,26,22,31,16,26)=ИХКЖСЖУЛФГЩХЮПЩ

 $\frac{k=8}{}$ > (8,21,10,6,17,6,19,11,20,2,25,21,30,15,25)=ЗФЙЁРЁТКУВШФЭОШ

 $\frac{k=9}{}$ > (7,20,9,5,16,5,18,10,19,1,24,20,29,14,24)=ЖУИЕПЕСЙТБЧУЬНЧ

 $\frac{k=10}{}$ > (6,19,8,4,15,4,17,9,18,0,23,19,28,13,23)=ЁТЗДОДРИСАЦТЫМЦ

 $\frac{k=11}{2}$ > (5,18,7,3,14,3,16,8,17,32,22,18,27,12,22)=ЕСЖГНГПЗРЯХСЪЛХ

 $\frac{k=12}{}$ > (4,17,6,2,13,2,15,7,16,31,21,17,26,11,21)=ДРЁВМВОЖПЮФРЩКФ

 $\frac{k=13}{}$ > (3,16,5,1,12,1,14,6,15,30,20,16,25,10,20)=ГПЕБЛБНЁОЭУПШЙУ

 $\frac{k=14}{}$ > (2,15,4,0,11,0,13,5,14,29,19,15,24,9,19)=ВОДАКАМЕНЬТОЧИТ

Х = ВОДАКАМЕНЬТОЧИТ

№ критерия	Количество баллов	Описание критерия
1	4	При расшифровке получена правильная фраза
2	4	При дешифрации шифра Виженера получена правильная числовая комбинация (Y')

3 критерий – оценка написанного учеником решения (выбирается только 1 пункт)			
3 (a)	4	Приведено правильное достаточное решение	
3 (б)	1	Приведено частично правильное (либо неполное) решение	
3 (B)	0	Решение не приведено	

Итоговая оценка складывается из суммы баллов за соответствующие решению ученика критерии.

Задача 5. Сообщение было последовательно зашифровано с помощью шифра Виженера и шифра Хилла. Ключом в шифре Виженера является K = CLOUD. Ключом в шифре Хилла является пара матриц: $A = \begin{pmatrix} 10 & 7 \\ 9 & 13 \end{pmatrix}$ $B = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$. Расшифровать сообщение Y = JUGHIYUEDAFQYD. Кольцо Z_{26} . (18 баллов)

Решение.

$$A^{-1} = \frac{1}{\det A} \tilde{A}^{t}$$

$$\det A = 130 - 63 = 15$$

$$\det A = (15)^{-1} = 7$$

$$\tilde{A}^{t} = \begin{pmatrix} 13 & -9 \\ -7 & 10 \end{pmatrix}$$

$$\tilde{A}^{t} = \begin{pmatrix} 13 & -7 \\ -9 & 10 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 13 & 3 \\ 15 & 18 \end{pmatrix}$$

Y= JUGHIYUEDAFQYD (9,20,6,7,8,24,20,4,3,0,5,16,24,3)

 $(9,20) \rightarrow (6,11)$

$$\binom{13}{15} \quad \frac{3}{18} \binom{9}{20} - \binom{2}{5} = \binom{13}{15} \quad \frac{3}{15} \binom{7}{15} = \binom{13 * 7 + 3 * 15}{15 * 7 + 18 * 15} = \binom{6}{11}$$

$$(6,7) \rightarrow (6,18)$$

$$\binom{13}{15} \quad \frac{3}{18} \binom{6}{7} - \binom{2}{5} = \binom{13}{15} \quad \frac{3}{18} \binom{4}{2} = \binom{13 * 4 + 3 * 2}{15 * 4 + 18 * 2} = \binom{6}{18}$$

$$(8,24) \rightarrow (5,16)$$

$$\binom{13}{15} \quad \frac{3}{18} \left(\binom{8}{24} - \binom{2}{5} \right) = \binom{13}{15} \quad \frac{3}{18} \binom{6}{19} = \binom{13 * 6 + 3 * 19}{15 * 6 + 18 * 19} = \binom{5}{16}$$

$$(20.4) \rightarrow (23.18)$$

$$\binom{13}{15} \quad \frac{3}{18} \left(\binom{20}{4} - \binom{2}{5} \right) = \binom{13}{15} \quad \frac{3}{18} \left(\frac{18}{-1} \right) = \binom{13 * 18 - 3 * 1}{15 * 18 - 18 * 1} = \binom{23}{18}$$

$$(3,0) \rightarrow (24,3)$$

$$\begin{pmatrix} 13 & 3 \\ 15 & 18 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 13 & 3 \\ 15 & 18 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} = \begin{pmatrix} 13 * 1 - 3 * 5 \\ 15 * 1 - 18 * 5 \end{pmatrix} = \begin{pmatrix} 24 \\ 3 \end{pmatrix}$$

$$(5,16) \rightarrow (20,9)$$

$$\binom{13}{15} \quad \frac{3}{18} \left(\binom{5}{16} - \binom{2}{5} \right) = \binom{13}{15} \quad \frac{3}{18} \binom{3}{11} = \binom{13 * 3 + 3 * 11}{15 * 3 + 18 * 11} = \binom{20}{9}$$

$$(24,3) \rightarrow (20,8)$$

$$\begin{pmatrix} 13 & 3 \\ 15 & 18 \end{pmatrix} \begin{pmatrix} 24 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 13 & 3 \\ 15 & 18 \end{pmatrix} \begin{pmatrix} 22 \\ -2 \end{pmatrix} = \begin{pmatrix} 13 * 22 - 3 * 2 \\ 15 * 22 - 18 * 2 \end{pmatrix} = \begin{pmatrix} 20 \\ 8 \end{pmatrix}$$

Y' = (6,11,6,18,5,16,23,18,24,3,20,9,20,8)

K = CLOUD(2,11,14,20,3)

X = (4,0,18,24,2,14,12,4,4,0,18,24,6,14) = EASYCOMEEASYGO

№ критерия	Количество баллов	Описание критерия	
1	4	Правильно найдена обратная матрица	
2	1	При расшифровке получена правильная фраза	
3	4	При дешифрации шифра Хилла получена правильная числовая	
		комбинация (Ү')	
4	3	При дешифрации шифра Виженера получена правильная	
		числовая комбинация (Х)	
5 критерий – оценка написанного учеником решения (выбирается только 1 пункт)			
5 (a)	6	Приведено правильное достаточное решение	
5 (6)	2	Приведено частично правильное (либо неполное) решение	
5 (B)	0	Решение не приведено	

Итоговая оценка складывается из суммы баллов за соответствующие решению ученика критерии.

Проектная задача. На одном из языков программирования (Алгоритмический, С#, C++, Pascal, Java, Python) разработать программу для автоматического шифрования сообщений с помощью шифра Виженера. (33 балла)

№ критерия	Количество баллов	Описание критерия
1	33	Приведена программа, правильно реализующая шифр
		Виженера. При написании программы допущено не более 3-х
		синтаксических ошибок. Если одна и та же ошибка встречается
		несколько раз, она считается за одну ошибку.
2	25	При написании программы допущены незначительные
		логические ошибки, но ход решения правильный. При
		написании программы допущено не более 5-и синтаксических
		ошибок.
3	12	Программа выполняет шифрование входных данных, но логика
		шифрования сильно отличается от шифра Виженера. При
		написании программы допущено не более 7-и синтаксических
		ошибок.
4	5	Программа не дописана, но имеются идеи, совпадающие с
		алгоритмом шифрования.
5	0	Задание не выполнено.

Итоговая оценка – количество баллов за выбранный критерий