

Многопрофильная инженерная олимпиада «Звезда» «Авиационная и ракетно-космическая техника»

7-9 классы

Заключительный этап

2021-2022

Задания, ответы и критерии оценивания

Задача 1 (20 баллов)

На каком расстоянии от центра Земли находится центр тяжести системы Земля — Луна? Масса Земли $M_3=6\cdot 10^{24} \kappa z$; масса Луны $M_{\it I}=7,3\cdot 10^{22} \kappa z$.

Ответ: ≈4568 км.

Решение.

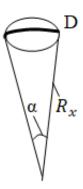
Начало отсчета совместим с центром Земли, и ось направим в сторону Луны. По определению центра масс:

$$x_c = \frac{{}^{M_3 \cdot x_3 + M_{\pi} \cdot x_{\pi}}}{{}^{M_3 + M_{\pi}}} = \frac{{}^{6 \cdot 10^{24} \cdot 0 + 7, 3 \cdot 10^{22} \cdot 380~000}}{{}^{6 \cdot 10^{24} + 7, 3 \cdot 10^{22}}} \approx 4568~\text{km}.$$

Задача 2 (20 баллов)

Космонавт, находясь на Луне, видел бы земной шар под углом $\alpha = 1^{\circ}54'$. Зная диаметр Земли (12742 км), оцените, приблизительно, расстояние от Земли до Луны.

Ответ: ≈ 384000 км


Решение.

Длина дуги окружности радиусом R_{χ} соответствующая 1°

$$L = \frac{2\pi R_x}{360},$$

Следовательно диаметр Земли

$$rac{2\pi R_{x}}{360} \cdot \alpha = 12742$$
 $R_{x} = rac{12742 \cdot 360}{2\pi lpha} pprox 384000$ км

Задача 3 (20 баллов)

С воздушного шара, опускающегося вертикально вниз с постоянной скоростью $v_{01} = 2$ м/с, бросили вертикально вверх камень со скоростью $v_{02} = 18$ м/с относительно Земли.

Какое расстояние S будет между шаром и камнем, когда камень достигнет наивысшей точки своей траектории?

Через какой промежуток времени t камень пролетит мимо шара, падая вниз? Сопротивлением воздуха пренебречь. Результат округлить до целых.

Ответ:
$$S \approx 20$$
 м, $t = 4$ с.

Решение.

Уравнения движения камня:

$$x_1 = 18t - \frac{10t^2}{2}.$$

$$v_1 = 18 - 10t$$
.

Уравнения движения шара:

$$x_2 = -2t$$
.

В самой верхней точке $v_1=0\,$ м/с. Получаем, соответствующее время: $t=1.8\,$ с.

В результате:

$$\mathbf{x}_1 = 18 \cdot 1,8 - \frac{10 \cdot 1,8^2}{2} = 16,2$$
 м.

$$x_2 = -2 \cdot 1.8 = -3.6 \text{ M}.$$

Искомое расстояние: $S = x_1 + |x_2| = 19,8 \text{ м} \approx 20 \text{ м}.$

Когда камень пролетает мимо шара:

$$\mathbf{x}_1 = \mathbf{x}_2.$$

$$18t - \frac{10t^2}{2} = -2t.$$

Получаем: t = 4 c.

Задача 4 (20 баллов)

Летчик давит на сиденье кресла самолета в нижней точке петли Нестерова с силой 7200 Н. Масса летчике $80~\kappa z$, радиус петли $250~\mathrm{M}$.

Определите скорость самолета.

Ответ: 142 [м/с]

Решение.

В нижней точке траектории летчик находится под действием двух сил: силы тяжести и центробежной силы. Суммарная сила Р

$$P=mg+rac{mv^2}{R}$$
, отсюда: $v=\sqrt{rac{(P-mg)R}{m}}$ $v=\sqrt{rac{(7200-80\cdot 9,8)\cdot 250}{80}}=142~[m/c]$

Задача 5 (20 баллов)

Определите скорость тела, при которой оно становится спутником Земли. Радиус Земли $R=6371\ \mathrm{km}$.

Ответ: 7,9 [км/с].

Решение.

По второму закону Ньютона:

$$\frac{mv^2}{R} = \text{mg}$$

$$v = \sqrt{R \cdot g} = \sqrt{6371 \cdot 10^3 \cdot 9}, 8 = 7,9 \text{ [km/c]}.$$