

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии наземного транспорта»

9-10 классы

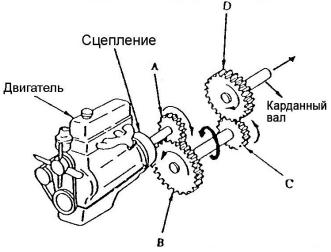
Заключительный этап

2022-2023

Задания, ответы и критерии оценивания

Пояснения к заданию

Трансмиссия автомобиля имеет свои характерные технические характеристики. Одно из них — передаточное отношение. Для определения передаточного числа шестеренчатого механизма нужно знать угловые скорости (числа оборотов) или количество зубьев на ведомой и ведущей шестернях.


Таким образом, получаем соотношение:

$$i = \frac{w_1}{w_2} = \frac{n_1}{n_2} = \frac{z_2}{z_1},$$

где i — передаточное число; w_1 — угловая скорость ведущей шестерни, w_2 — угловая скорость ведомой шестерни, n_1 — число оборотов ведущей шестерни, n_2 — число оборотов ведомой шестерни, n_2 — число зубьев на ведущей шестерне, n_2 — число зубьев на ведомой шестерне.

Общее передаточное отношение (число) механизма (редуктора) равно произведению частных передаточных отношений.

Если угловая скорость (частота вращения) ведущего элемента на входе в трансмиссию автомобиля превышает угловую скорость ведомого элемента, то такая передача называется понижающей, если угловая скорость ведущего элемента на входе в трансмиссию автомобиля меньше угловой скорости ведомого элемента, то такая передача называется повышающей. Если угловая скорость ведущего и ведомого элементов совпадает, то такая передача называется прямой.

Условия задачи

На рисунке изображена схема привода какого-то транспортного средства, состоящего из двигателя, сцепления, коробки передач, представленной двумя парами шестерен, и карданного вала. Вращение от карданного вала передается непосредственно на ведущие колеса.

Известно:

- частота вращения коленчатого вала двигателя 2400 об/мин;
- требуемая скорость движения транспортного средства − 60 км/ч;
- радиус качения ведущего колеса транспортного средства 0,4 м.

Задача 1 (15 баллов)

Определите необходимую для обеспечения требуемой скорости частоту вращения карданного вала транспортного средства.

Решение:

1. Скорость движения транспортного средства можно определить из формулы:

$$V_{\rm TC} = 2\pi R_{\rm K} \cdot n_{\rm KDB},\tag{1}$$

где $V_{\rm TC}$ — скорость движения транспортного средства, м/мин; $\pi=3,14$; $R_{\rm K}$ — радиус качения ведущего колеса транспортного средства, м; $n_{\rm KPB}$ — частота вращения карданного вала транспортного средства.

2. Преобразуем выражение (1) с целью определения значения неизвестной величины $n_{\text{крв}}$:

$$n_{\rm KPB} = \frac{V_{\rm TC}}{2\pi R_{\rm K}},\tag{2}$$

3. Подставим в выражение (2) известные из условий задачи числовые значения, учтем при этом, что:

$$V_{\rm TC} = 60 \, {\rm кm/q} = 1000 \, {\rm m/muh}$$

$$n_{\text{крв}} = \frac{1000}{2 \cdot 3.14 \cdot 0.4} = 398 \text{ об/мин}$$
 (3)

Ответ: требуемая частота вращения карданного вала транспортного средства 398 об/мин.

Задача 2 (85 баллов)

Требуется завершить проектирование трансмиссии транспортного средства, для чего нужно подобрать шестерни A, B, C и D, чтобы была обеспечена требуемая скорость при его движении. В распоряжении разработчиков имеются только шестерни с числом зубьев 10, 20, 30 и 40, из числа которых и предстоит выбрать необходимые.

Решение:

1. Определим частоту вращения карданного вала транспортного средства из формулы:

$$n_{\rm KpB} = \frac{V_{\rm TC}}{2\pi R_{\rm K}},\tag{1}$$

где $n_{\rm кpB}$ — частота вращения карданного вала транспортного средства, об/мин; $V_{\rm TC}$ — скорость движения транспортного средства, м/мин; $\pi=3,14$; $R_{\rm K}$ — радиус качения ведущего колеса транспортного средства, м;

2. Подставим в выражение (1) известные из условий задачи числовые значения входящих в него параметров:

$$n_{\text{крв}} = \frac{1000}{2 \cdot 3.14 \cdot 0.4} = 398 \approx 400 \text{ об/мин,}$$
 (2)

3. Определим общее передаточное число трансмиссии транспортного средства, используя формулу, приведенную в пояснениях к задаче:

$$i_{\rm Tp} = \frac{n_1}{n_2},\tag{3}$$

где $i_{\rm Tp}$ — передаточное число трансмиссии транспортного средства; n_1 — число оборотов ведущего элемента трансмиссии; n_2 — число элементов ведомого элемента трансмиссии.

Для нашего случая:

$$i_{\rm Tp} = \frac{n_{\rm KB}}{n_{\rm KPB}} = \frac{2400}{400} = 6,\tag{4}$$

где $n_{\text{кв}}$ — частота вращения коленчатого вала двигателя транспортного средства, об/мин; $n_{\text{крв}}$ — частота вращения карданного вала транспортного средства, об/мин.

4. Из рисунка в условиях задачи видно, что в данном случае трансмиссия транспортного средства состоит из двух шестеренчатых передач, поэтому общее передаточное число трансмиссии равно произведению частных передаточных отношений и будет определяться по формуле:

$$i_{\rm rp} = i_1 \cdot i_2 = \frac{z_B}{z_A} \cdot \frac{z_D}{z_C} = 6,$$
 (5)

где $i_{\rm TP}$ — передаточное число трансмиссии транспортного средства; i_1 — передаточное число первой передачи; i_2 — передаточное число второй передачи; z_B — число зубьев шестерни B; z_A — число зубьев шестерни A; z_D — число зубьев шестерни C.

5. Учитывая номенклатуру шестерен, имеющихся в распоряжении конструкторов, требуемое передаточное число трансмиссии транспортного средства может быть обеспечено следующими сочетаниями передаточных чисел первой и второй передач:

1)
$$i_{\text{Tp1}} = 3 \cdot 2 = 6$$
, (6)
2) $i_{\text{Tp2}} = 2 \cdot 3 = 6$,
3) $i_{\text{Tp3}} = 4 \cdot 1,5 = 6$,
4) $i_{\text{Tp4}} = 1,5 \cdot 4 = 6$,

Любое из данных сочетаний передаточных чисел удовлетворяет условиям задачи.

6. Определим числа зубьев шестерен для случая 1.

$$i_{\text{rp1}} = i_1 \cdot i_2 = \frac{z_B}{z_A} \cdot \frac{z_D}{z_c} = 3 \cdot 2 = 6,$$

$$\frac{z_B}{z_A} = 3; \frac{z_D}{z_c} = 2$$
(7)

Учитывая шестерни, имеющиеся в распоряжении разработчиков, получаем:

$$z_B = 30$$
; $z_A = 10$; $z_D = 40$; $z_C = 20$

7. Определим числа зубьев шестерен для случая 2.

$$i_{\text{Tp2}} = i_1 \cdot i_2 = \frac{z_B}{z_A} \cdot \frac{z_D}{z_c} = 2 \cdot 3 = 6,$$

$$\frac{z_B}{z_A} = 2; \frac{z_D}{z_c} = 3$$
(8)

Тогда:

$$z_B = 40$$
; $z_A = 20$; $z_D = 30$; $z_C = 10$

8. Определим числа зубьев шестерен для случая 3.

$$i_{\text{Tp3}} = i_1 \cdot i_2 = \frac{z_B}{z_A} \cdot \frac{z_D}{z_c} = 4 \cdot 1,5 = 6,$$

$$\frac{z_B}{z_A} = 4; \frac{z_D}{z_c} = 1,5$$
(9)

Тогда:

$$z_B = 40$$
; $z_A = 10$; $z_D = 30$; $z_C = 20$

9. Определим числа зубьев шестерен для случая 4.

$$i_{\text{Tp4}} = i_1 \cdot i_2 = \frac{Z_B}{Z_A} \cdot \frac{Z_D}{Z_C} = 1,5 \cdot 4 = 6,$$

$$\frac{Z_B}{Z_A} = 1,5; \frac{Z_D}{Z_C} = 4$$
(10)

Тогда:

$$z_B = 30$$
; $z_A = 20$; $z_D = 40$; $z_C = 10$

Имеем классический пример конструкторской задачи, когда разработчики имеют несколько вариантов решения, каждый из которых удовлетворяет условиям поставленной перед ними задачи, а окончательный выбор определяется, учитывая множество других факторов, например, стоимость шестерен, возможности компоновки механизма, простоту монтажа, надежность и т.д.

Ответы: 1)
$$z_A = 10$$
; $z_B = 30$; $z_D = 40$; $z_C = 20$
2) $z_A = 20$; $z_B = 40$; $z_D = 30$; $z_C = 10$
3) $z_A = 10$; $z_B = 40$; $z_D = 30$; $z_C = 20$
4) $z_A = 20$; $z_B = 30$; $z_D = 40$; $z_C = 10$